Topic: Engineering
You are looking at all articles with the topic "Engineering". We found 34 matches.
Hint:
To view all topics, click here. Too see the most popular topics, click here instead.
Bastion Fort
A bastion fort or trace italienne (a phrase improperly derived from French, literally meaning Italian outline), is a fortification in a style that evolved during the early modern period of gunpowder when the cannon came to dominate the battlefield. It was first seen in the mid-15th century in Italy. Some types, especially when combined with ravelins and other outworks, resembled the related star fort of the same era.
The design of the fort is normally a polygon with bastions at the corners of the walls. These outcroppings eliminated protected blind spots, called "dead zones", and allowed fire along the curtain from positions protected from direct fire. Many bastion forts also feature cavaliers, which are raised secondary structures based entirely inside the primary structure.
Discussed on
- "Bastion Fort" | 2020-09-12 | 76 Upvotes 49 Comments
- "Bastion Fort" | 2019-02-02 | 60 Upvotes 20 Comments
Computer
A computer is a machine that can be instructed to carry out sequences of arithmetic or logical operations automatically via computer programming. Modern computers have the ability to follow generalized sets of operations, called programs. These programs enable computers to perform an extremely wide range of tasks. A "complete" computer including the hardware, the operating system (main software), and peripheral equipment required and used for "full" operation can be referred to as a computer system. This term may as well be used for a group of computers that are connected and work together, in particular a computer network or computer cluster.
Computers are used as control systems for a wide variety of industrial and consumer devices. This includes simple special purpose devices like microwave ovens and remote controls, factory devices such as industrial robots and computer-aided design, and also general purpose devices like personal computers and mobile devices such as smartphones. The Internet is run on computers and it connects hundreds of millions of other computers and their users.
Early computers were only conceived as calculating devices. Since ancient times, simple manual devices like the abacus aided people in doing calculations. Early in the Industrial Revolution, some mechanical devices were built to automate long tedious tasks, such as guiding patterns for looms. More sophisticated electrical machines did specialized analog calculations in the early 20th century. The first digital electronic calculating machines were developed during World War II. The first semiconductor transistors in the late 1940s were followed by the silicon-based MOSFET (MOS transistor) and monolithic integrated circuit (IC) chip technologies in the late 1950s, leading to the microprocessor and the microcomputer revolution in the 1970s. The speed, power and versatility of computers have been increasing dramatically ever since then, with MOS transistor counts increasing at a rapid pace (as predicted by Moore's law), leading to the Digital Revolution during the late 20th to early 21st centuries.
Conventionally, a modern computer consists of at least one processing element, typically a central processing unit (CPU) in the form of a metal-oxide-semiconductor (MOS) microprocessor, along with some type of computer memory, typically MOS semiconductor memory chips. The processing element carries out arithmetic and logical operations, and a sequencing and control unit can change the order of operations in response to stored information. Peripheral devices include input devices (keyboards, mice, joystick, etc.), output devices (monitor screens, printers, etc.), and input/output devices that perform both functions (e.g., the 2000s-era touchscreen). Peripheral devices allow information to be retrieved from an external source and they enable the result of operations to be saved and retrieved.
Dyson sphere
A Dyson sphere is a hypothetical megastructure that completely encompasses a star and captures a large percentage of its power output. The concept is a thought experiment that attempts to explain how a spacefaring civilization would meet its energy requirements once those requirements exceed what can be generated from the home planet's resources alone. Only a tiny fraction of a star's energy emissions reach the surface of any orbiting planet. Building structures encircling a star would enable a civilization to harvest far more energy.
The first contemporary description of the structure was by Olaf Stapledon in his science fiction novel Star Maker (1937), in which he described "every solar system... surrounded by a gauze of light traps, which focused the escaping solar energy for intelligent use." The concept was later popularized by Freeman Dyson in his 1960 paper "Search for Artificial Stellar Sources of Infrared Radiation." Dyson speculated that such structures would be the logical consequence of the escalating energy needs of a technological civilization and would be a necessity for its long-term survival. He proposed that searching for such structures could lead to the detection of advanced, intelligent extraterrestrial life. Different types of Dyson spheres and their energy-harvesting ability would correspond to levels of technological advancement on the Kardashev scale.
Since then, other variant designs involving building an artificial structure or series of structures to encompass a star have been proposed in exploratory engineering or described in science fiction under the name "Dyson sphere". These later proposals have not been limited to solar-power stations, with many involving habitation or industrial elements. Most fictional depictions describe a solid shell of matter enclosing a star, which was considered by Dyson himself the least plausible variant of the idea. In May 2013, at the Starship Century Symposium in San Diego, Dyson repeated his comments that he wished the concept had not been named after him.
Discussed on
- "Dyson sphere" | 2016-08-09 | 79 Upvotes 84 Comments
Evolved antenna
In radio communications, an evolved antenna is an antenna designed fully or substantially by an automatic computer design program that uses an evolutionary algorithm that mimics Darwinian evolution. This procedure has been used in recent years to design a few antennas for mission-critical applications involving stringent, conflicting, or unusual design requirements, such as unusual radiation patterns, for which none of the many existing antenna types are adequate.
Discussed on
- "Evolved antenna" | 2018-11-14 | 192 Upvotes 67 Comments
Hofstadter's Law
Hofstadter's law is a self-referential adage, coined by Douglas Hofstadter in his book Gödel, Escher, Bach: An Eternal Golden Braid (1979) to describe the widely experienced difficulty of accurately estimating the time it will take to complete tasks of substantial complexity:
Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law.
The law is often cited by programmers in discussions of techniques to improve productivity, such as The Mythical Man-Month or extreme programming.
Discussed on
- "Hofstadter's Law" | 2016-03-21 | 10 Upvotes 1 Comments
- "Hofstadter's law" | 2011-02-25 | 94 Upvotes 18 Comments
Hyperloop
A Hyperloop is a proposed mode of passenger and freight transportation, first used to describe an open-source vactrain design released by a joint team from Tesla and SpaceX. Hyperloop is a sealed tube or system of tubes through which a pod may travel free of air resistance or friction conveying people or objects at high speed while being very efficient, thereby drastically reducing travel times over medium-range distances.
Elon Musk's version of the concept, first publicly mentioned in 2012, incorporates reduced-pressure tubes in which pressurized capsules ride on air bearings driven by linear induction motors and axial compressors.
The Hyperloop Alpha concept was first published in August 2013, proposing and examining a route running from the Los Angeles region to the San Francisco Bay Area, roughly following the Interstate 5 corridor. The Hyperloop Genesis paper conceived of a hyperloop system that would propel passengers along the 350-mile (560 km) route at a speed of 760 mph (1,200 km/h), allowing for a travel time of 35 minutes, which is considerably faster than current rail or air travel times. Preliminary cost estimates for this LA–SF suggested route were included in the white paper—US$6 billion for a passenger-only version, and US$7.5 billion for a somewhat larger-diameter version transporting passengers and vehicles—although transportation analysts had doubts that the system could be constructed on that budget; some analysts claimed that the Hyperloop would be several billion dollars overbudget, taking into consideration construction, development, and operation costs.
The Hyperloop concept has been explicitly "open-sourced" by Musk and SpaceX, and others have been encouraged to take the ideas and further develop them. To that end, a few companies have been formed, and several interdisciplinary student-led teams are working to advance the technology. SpaceX built an approximately 1-mile-long (1.6 km) subscale track for its pod design competition at its headquarters in Hawthorne, California.
Discussed on
- "Hyperloop" | 2013-06-01 | 10 Upvotes 9 Comments
Iron Ring
The Iron Ring is a ring worn by many Canadian-trained engineers, as a symbol and reminder of the obligations and ethics associated with their profession. The ring is presented to engineering graduates in a private ceremony known as the Ritual of the Calling of an Engineer. The concept of the ritual and its Iron Rings originated from H. E. T. Haultain in 1922, with assistance from Rudyard Kipling, who crafted the ritual at Haultain's request.
Discussed on
- "Iron Ring" | 2013-05-07 | 277 Upvotes 187 Comments
Ishikawa diagram
Ishikawa diagrams (also called fishbone diagrams, herringbone diagrams, cause-and-effect diagrams, or Fishikawa) are causal diagrams created by Kaoru Ishikawa that show the causes of a specific event.
Common uses of the Ishikawa diagram are product design and quality defect prevention to identify potential factors causing an overall effect. Each cause or reason for imperfection is a source of variation. Causes are usually grouped into major categories to identify and classify these sources of variation.
Discussed on
- "Ishikawa diagram" | 2020-01-29 | 104 Upvotes 16 Comments
Launch loop
A launch loop or Lofstrom loop is a proposed system for launching objects into orbit using a moving cable-like system situated inside a sheath attached to the Earth at two ends and suspended above the atmosphere in the middle. The design concept was published by Keith Lofstrom and describes an active structure maglev cable transport system that would be around 2,000 km (1,240 mi) long and maintained at an altitude of up to 80 km (50 mi). A launch loop would be held up at this altitude by the momentum of a belt that circulates around the structure. This circulation, in effect, transfers the weight of the structure onto a pair of magnetic bearings, one at each end, which support it.
Launch loops are intended to achieve non-rocket spacelaunch of vehicles weighing 5 metric tons by electromagnetically accelerating them so that they are projected into Earth orbit or even beyond. This would be achieved by the flat part of the cable which forms an acceleration track above the atmosphere.
The system is designed to be suitable for launching humans for space tourism, space exploration and space colonization, and provides a relatively low 3g acceleration.
Discussed on
- "Launch loop" | 2018-07-26 | 116 Upvotes 49 Comments
- "The Lofstrom Loop" | 2015-11-30 | 30 Upvotes 19 Comments
Parkinson's Law of Triviality
Parkinson's law of triviality is C. Northcote Parkinson's 1957 argument that members of an organization give disproportionate weight to trivial issues. Parkinson provides the example of a fictional committee whose job was to approve the plans for a nuclear power plant spending the majority of its time on discussions about relatively minor but easy-to-grasp issues, such as what materials to use for the staff bike shed, while neglecting the proposed design of the plant itself, which is far more important and a far more difficult and complex task.
The law has been applied to software development and other activities. The terms bicycle-shed effect, bike-shed effect, and bike-shedding were coined as metaphors to illuminate the law of triviality; it was popularised in the Berkeley Software Distribution community by the Danish software developer Poul-Henning Kamp in 1999 and has spread from there to the whole software industry.
Discussed on
- "Parkinson's Law of Triviality" | 2014-02-03 | 51 Upvotes 11 Comments