Topic: Engineering (Page 2)

You are looking at all articles with the topic "Engineering". We found 38 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

πŸ”— Plasma Antenna

πŸ”— Telecommunications πŸ”— Radio πŸ”— Electronics πŸ”— Engineering

A plasma antenna is a type of radio antenna currently in development in which plasma is used instead of the metal elements of a traditional antenna. A plasma antenna can be used for both transmission and reception. Although plasma antennas have only become practical in recent years, the idea is not new; a patent for an antenna using the concept was granted to J. Hettinger in 1919.

Early practical examples of the technology used discharge tubes to contain the plasma and are referred to as ionized gas plasma antennas. Ionized gas plasma antennas can be turned on and off and are good for stealth and resistance to electronic warfare and cyber attacks. Ionized gas plasma antennas can be nested such that the higher frequency plasma antennas are placed inside lower frequency plasma antennas. Higher frequency ionized gas plasma antenna arrays can transmit and receive through lower frequency ionized gas plasma antenna arrays. This means that the ionized gas plasma antennas can be co-located and ionized gas plasma antenna arrays can be stacked. Ionized gas plasma antennas can eliminate or reduce co-site interference. Smart ionized gas plasma antennas use plasma physics to shape and steer the antenna beams without the need of phased arrays. Satellite signals can be steered or focused in the reflective or refractive modes using banks of plasma tubes making unique ionized gas satellite plasma antennas. The thermal noise of ionized gas plasma antennas is less than in the corresponding metal antennas at the higher frequencies. Solid state plasma antennas (also known as plasma silicon antennas) with steerable directional functionality that can be manufactured using standard silicon chip fabrication techniques are now also in development. Plasma silicon antennas are candidates for use in WiGig (the planned enhancement to Wi-Fi), and have other potential applications, for example in reducing the cost of vehicle-mounted radar collision avoidance systems.

Discussed on

πŸ”— Dyson sphere

πŸ”— Spaceflight πŸ”— Astronomy πŸ”— Engineering πŸ”— Astronomy/Astronomical objects

A Dyson sphere is a hypothetical megastructure that completely encompasses a star and captures a large percentage of its power output. The concept is a thought experiment that attempts to explain how a spacefaring civilization would meet its energy requirements once those requirements exceed what can be generated from the home planet's resources alone. Only a tiny fraction of a star's energy emissions reach the surface of any orbiting planet. Building structures encircling a star would enable a civilization to harvest far more energy.

The first contemporary description of the structure was by Olaf Stapledon in his science fiction novel Star Maker (1937), in which he described "every solar system... surrounded by a gauze of light traps, which focused the escaping solar energy for intelligent use." The concept was later popularized by Freeman Dyson in his 1960 paper "Search for Artificial Stellar Sources of Infrared Radiation." Dyson speculated that such structures would be the logical consequence of the escalating energy needs of a technological civilization and would be a necessity for its long-term survival. He proposed that searching for such structures could lead to the detection of advanced, intelligent extraterrestrial life. Different types of Dyson spheres and their energy-harvesting ability would correspond to levels of technological advancement on the Kardashev scale.

Since then, other variant designs involving building an artificial structure or series of structures to encompass a star have been proposed in exploratory engineering or described in science fiction under the name "Dyson sphere". These later proposals have not been limited to solar-power stations, with many involving habitation or industrial elements. Most fictional depictions describe a solid shell of matter enclosing a star, which was considered by Dyson himself the least plausible variant of the idea. In May 2013, at the Starship Century Symposium in San Diego, Dyson repeated his comments that he wished the concept had not been named after him.

Discussed on

πŸ”— Pykrete

πŸ”— Technology πŸ”— Military history πŸ”— Military history/North American military history πŸ”— Military history/Military science, technology, and theory πŸ”— Architecture πŸ”— United Kingdom πŸ”— Transport πŸ”— Military history/Maritime warfare πŸ”— Military history/World War II πŸ”— Civil engineering πŸ”— Engineering πŸ”— Transport/Maritime πŸ”— Military history/Canadian military history πŸ”— Military history/European military history πŸ”— Military history/British military history

Pykrete is a frozen ice alloy , originally made of approximately 14 percent sawdust or some other form of wood pulp (such as paper) and 86 percent ice by weight (6 to 1 by weight). During World War II, Geoffrey Pyke proposed it as a candidate material for a supersized aircraft carrier for the British Royal Navy. Pykrete features unusual properties, including a relatively slow melting rate due to its low thermal conductivity, as well as a vastly improved strength and toughness compared to ordinary ice. These physical properties can make the material comparable to concrete, as long as the material is kept frozen.

Pykrete is slightly more difficult to form than concrete, as it expands during the freezing process. However, it can be repaired and maintained using seawater as a raw material. The mixture can be moulded into any shape and frozen, and it will be tough and durable, as long as it is kept at or below freezing temperature. Resistance to gradual creep or sagging is improved by lowering the temperature further, to βˆ’15Β Β°C (5Β Β°F).

Discussed on

πŸ”— Hofstadter's Law

πŸ”— Computing πŸ”— Systems πŸ”— Business πŸ”— Computing/Software πŸ”— Computing/Computer science πŸ”— Engineering πŸ”— Systems/Systems engineering

Hofstadter's law is a self-referential adage, coined by Douglas Hofstadter in his book GΓΆdel, Escher, Bach: An Eternal Golden Braid (1979) to describe the widely experienced difficulty of accurately estimating the time it will take to complete tasks of substantial complexity:

Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law.

The law is often cited by programmers in discussions of techniques to improve productivity, such as The Mythical Man-Month or extreme programming.

Discussed on

πŸ”— Ishikawa diagram

πŸ”— Business πŸ”— Engineering

Ishikawa diagrams (also called fishbone diagrams, herringbone diagrams, cause-and-effect diagrams, or Fishikawa) are causal diagrams created by Kaoru Ishikawa that show the causes of a specific event.

Common uses of the Ishikawa diagram are product design and quality defect prevention to identify potential factors causing an overall effect. Each cause or reason for imperfection is a source of variation. Causes are usually grouped into major categories to identify and classify these sources of variation.

Discussed on

πŸ”— List of screw drives

πŸ”— Technology πŸ”— Canada πŸ”— Guild of Copy Editors πŸ”— Engineering

A screw drive is a system used to turn a screw. At a minimum, it is a set of shaped cavities and protrusions on the screw head that allows torque to be applied to it. Usually, it also involves a mating tool, such as a screwdriver, that is used to turn it. The following heads are categorized based on commonality, with some of the less-common drives being classified as "tamper-resistant".

Most heads come in a range of sizes, typically distinguished by a number, such as "Phillips #00". These sizes do not necessarily describe a particular dimension of the drive shape, but rather are arbitrary designations.

Discussed on

πŸ”— Avro Canada VZ-9 Avrocar

πŸ”— United States πŸ”— Technology πŸ”— Aviation πŸ”— Military history πŸ”— Military history/Military aviation πŸ”— Military history/North American military history πŸ”— Military history/United States military history πŸ”— Military history/Military science, technology, and theory πŸ”— Canada πŸ”— Aviation/aircraft project πŸ”— Engineering πŸ”— Cold War πŸ”— Military history/Military land vehicles πŸ”— Military history/Canadian military history

The Avro Canada VZ-9 Avrocar was a VTOL aircraft developed by Avro Canada as part of a secret U.S. military project carried out in the early years of the Cold War. The Avrocar intended to exploit the Coandă effect to provide lift and thrust from a single "turborotor" blowing exhaust out the rim of the disk-shaped aircraft. In the air, it would have resembled a flying saucer.

Originally designed as a fighter-like aircraft capable of very high speeds and altitudes, the project was repeatedly scaled back over time and the U.S. Air Force eventually abandoned it. Development was then taken up by the U.S. Army for a tactical combat aircraft requirement, a sort of high-performance helicopter. In flight testing, the Avrocar proved to have unresolved thrust and stability problems that limited it to a degraded, low-performance flight envelope; subsequently, the project was cancelled in September 1961.

Through the history of the program, the project was referred to by a number of different names. Avro referred to the efforts as Project Y, with individual vehicles known as Spade and Omega. Project Y-2 was later funded by the U.S. Air Force, who referred to it as WS-606A, Project 1794 and Project Silver Bug. When the U.S. Army joined the efforts it took on its final name "Avrocar", and the designation "VZ-9", part of the U.S. Army's VTOL projects in the VZ series.

Discussed on

πŸ”— Rapatronic Camera

πŸ”— Military history πŸ”— Military history/Military science, technology, and theory πŸ”— Military history/Weaponry πŸ”— Engineering πŸ”— Photography πŸ”— Photography/History of photography

The rapatronic camera (a portmanteau of rapid action electronic) is a high-speed camera capable of recording a still image with an exposure time as brief as 10 nanoseconds.

The camera was developed by Harold Edgerton in the 1940s and was first used to photograph the rapidly changing matter in nuclear explosions within milliseconds of detonation, using exposures of several microseconds. To overcome the speed limitation of a conventional camera's mechanical shutter, the rapatronic camera uses two polarizing filters and a Faraday cell (or in some variants a Kerr cell). The two filters are mounted with their polarization angles at 90Β° to each other, to block all incoming light. The Faraday cell sits between the filters and changes the polarization plane of light passing through it depending on the level of magnetic field applied, acting as a shutter when it is energized at the right time for a very short amount of time, allowing the film to be properly exposed.

In magneto-optical shutters, the active material of the Faraday cell (e.g. dense flint glass, which reacts well to a strong magnetic field) is located inside an electromagnet coil, formed by a few loops of thick wire. The coil is powered from a pulse forming network by discharging a high-voltage capacitor (e.g. 2 microfarads at 1000 volts), into the coil via a trigatron or a thyratron switch. In electro-optical shutters, the active material is a liquid, typically nitrobenzene, located in a cell between two electrodes. A brief impulse of high voltage is applied to rotate the polarization of the passing light.

For a film-like sequence of high-speed photographs, as used in the photography of nuclear and thermonuclear tests, arrays of up to 12 cameras were deployed, with each camera carefully timed to record sequentially. Each camera was capable of recording only one exposure on a single sheet of film. Therefore, in order to create time-lapse sequences, banks of four to ten cameras were set up to take photos in rapid succession. The average exposure time used was three microseconds.

Discussed on

πŸ”— Parkinson's Law of Triviality

πŸ”— Computing πŸ”— Systems πŸ”— Business πŸ”— Engineering πŸ”— Systems/Systems engineering

Parkinson's law of triviality is C. Northcote Parkinson's 1957 argument that members of an organization give disproportionate weight to trivial issues. Parkinson provides the example of a fictional committee whose job was to approve the plans for a nuclear power plant spending the majority of its time on discussions about relatively minor but easy-to-grasp issues, such as what materials to use for the staff bike shed, while neglecting the proposed design of the plant itself, which is far more important and a far more difficult and complex task.

The law has been applied to software development and other activities. The terms bicycle-shed effect, bike-shed effect, and bike-shedding were coined as metaphors to illuminate the law of triviality; it was popularised in the Berkeley Software Distribution community by the Danish software developer Poul-Henning Kamp in 1999 and has spread from there to the whole software industry.

Discussed on

πŸ”— San Jose electric light tower

πŸ”— California πŸ”— California/San Francisco Bay Area πŸ”— Engineering

The San Jose electric light tower, also known as Owen's Electric Tower after its creator and chief booster, was constructed in 1881 at an intersection in downtown San Jose, California, as a "high light" or moonlight tower to light the city using arc lights. A pioneer use of electricity for municipal lighting, it was later strung with incandescent bulbs and was destroyed in a storm in December 1915. A half-size replica stands at History Park at Kelley Park.

Discussed on