Topic: Geology (Page 4)

You are looking at all articles with the topic "Geology". We found 39 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

🔗 The Messinian Salinity Crisis

🔗 Geology

The Messinian Salinity Crisis (MSC), also referred to as the Messinian Event, and in its latest stage as the Lago Mare event, was a geological event during which the Mediterranean Sea went into a cycle of partly or nearly complete desiccation throughout the latter part of the Messinian age of the Miocene epoch, from 5.96 to 5.33 Ma (million years ago). It ended with the Zanclean flood, when the Atlantic reclaimed the basin.

Sediment samples from below the deep seafloor of the Mediterranean Sea, which include evaporite minerals, soils, and fossil plants, show that the precursor of the Strait of Gibraltar closed tight about 5.96 million years ago, sealing the Mediterranean off from the Atlantic. This resulted in a period of partial desiccation of the Mediterranean Sea, the first of several such periods during the late Miocene. After the strait closed for the last time around 5.6 Ma, the region's generally dry climate at the time dried the Mediterranean basin out nearly completely within a thousand years. This massive desiccation left a deep dry basin, reaching 3 to 5 km (1.9 to 3.1 mi) deep below normal sea level, with a few hypersaline pockets similar to today's Dead Sea. Then, around 5.5 Ma, less dry climatic conditions resulted in the basin receiving more freshwater from rivers, progressively filling and diluting the hypersaline lakes into larger pockets of brackish water (much like today's Caspian Sea). The Messinian Salinity Crisis ended with the Strait of Gibraltar finally reopening 5.33 Ma, when the Atlantic rapidly filled up the Mediterranean basin in what is known as the Zanclean flood.

Even today, the Mediterranean is considerably saltier than the North Atlantic, owing to its near isolation by the Strait of Gibraltar and its high rate of evaporation. If the Strait of Gibraltar closes again (which is likely to happen in the near future on a geological time scale), the Mediterranean would mostly evaporate in about a thousand years, after which continued northward movement of Africa may obliterate the Mediterranean altogether.

Only the inflow of Atlantic water maintains the present Mediterranean level. When that was shut off sometime between 6.5 to 6 MYBP, net evaporative loss set in at the rate of around 3,300 cubic kilometers yearly. At that rate, the 3.7 million cubic kilometres of water in the basin would dry up in scarcely more than a thousand years, leaving an extensive layer of salt some tens of meters thick and raising global sea level about 12 meters.

Discussed on

🔗 Permian–Triassic Extinction Event

🔗 Palaeontology 🔗 Geology 🔗 Extinction

The Permian–Triassic extinction event, also known as the P–Tr extinction, the P–T extinction, the End-Permian Extinction, and colloquially as the Great Dying, formed the boundary between the Permian and Triassic geologic periods, as well as between the Paleozoic and Mesozoic eras, approximately 252 million years ago. It is the Earth's most severe known extinction event, with up to 96% of all marine species and 70% of terrestrial vertebrate species becoming extinct. It was the largest known mass extinction of insects. Some 57% of all biological families and 83% of all genera became extinct.

There is evidence for one to three distinct pulses, or phases, of extinction. Potential causes for those pulses include one or more large meteor impact events, massive volcanic eruptions (such as the Siberian Traps), and climate change brought on by large releases of underwater methane or methane-producing microbes.

The speed of the recovery from the extinction is disputed. Some scientists estimate that it took 10 million years (until the Middle Triassic), due both to the severity of the extinction and because grim conditions returned periodically for another 5 million years. However, studies in Bear Lake County, near Paris, Idaho, showed a relatively quick rebound in a localized Early Triassic marine ecosystem, taking around 2 million years to recover, suggesting that the impact of the extinction may have been felt less severely in some areas than others.

Discussed on

🔗 Singing Sand

🔗 Physics 🔗 Geology 🔗 Physics/Acoustics

Singing sand, also called whistling sand, barking sand or singing dune, is sand that produces sound. The sound emission may be caused by wind passing over dunes or by walking on the sand.

Certain conditions have to come together to create singing sand:

  1. The sand grains have to be round and between 0.1 and 0.5 mm in diameter.
  2. The sand has to contain silica.
  3. The sand needs to be at a certain humidity.

The most common frequency emitted seems to be close to 450 Hz.

There are various theories about the singing sand mechanism. It has been proposed that the sound frequency is controlled by the shear rate. Others have suggested that the frequency of vibration is related to the thickness of the dry surface layer of sand. The sound waves bounce back and forth between the surface of the dune and the surface of the moist layer, creating a resonance that increases the sound's volume. The noise may be generated by friction between the grains or by the compression of air between them.

Other sounds that can be emitted by sand have been described as "roaring" or "booming".

🔗 Climate Change

🔗 Climate change 🔗 Environment 🔗 Geography 🔗 Antarctica 🔗 Arctic 🔗 Geology 🔗 Globalization 🔗 Science Policy 🔗 Weather 🔗 Sanitation

Climate change includes both global warming driven by human-induced emissions of greenhouse gases and the resulting large-scale shifts in weather patterns. Though there have been previous periods of climatic change, since the mid-20th century humans have had an unprecedented impact on Earth's climate system and caused change on a global scale.

The largest driver of warming is the emission of gases that create a greenhouse effect, of which more than 90% are carbon dioxide (CO
2
) and methane. Fossil fuel burning (coal, oil, and natural gas) for energy consumption is the main source of these emissions, with additional contributions from agriculture, deforestation, and manufacturing. The human cause of climate change is not disputed by any scientific body of national or international standing. Temperature rise is accelerated or tempered by climate feedbacks, such as loss of sunlight-reflecting snow and ice cover, increased water vapour (a greenhouse gas itself), and changes to land and ocean carbon sinks.

Temperature rise on land is about twice the global average increase, leading to desert expansion and more common heat waves and wildfires. Temperature rise is also amplified in the Arctic, where it has contributed to melting permafrost, glacial retreat and sea ice loss. Warmer temperatures are increasing rates of evaporation, causing more intense storms and weather extremes. Impacts on ecosystems include the relocation or extinction of many species as their environment changes, most immediately in coral reefs, mountains, and the Arctic. Climate change threatens people with food insecurity, water scarcity, flooding, infectious diseases, extreme heat, economic losses, and displacement. These impacts have led the World Health Organization to call climate change the greatest threat to global health in the 21st century. Even if efforts to minimise future warming are successful, some effects will continue for centuries, including rising sea levels, rising ocean temperatures, and ocean acidification.

Many of these impacts are already felt at the current level of warming, which is about 1.2 °C (2.2 °F). The Intergovernmental Panel on Climate Change (IPCC) has issued a series of reports that project significant increases in these impacts as warming continues to 1.5 °C (2.7 °F) and beyond. Additional warming also increases the risk of triggering critical thresholds called tipping points. Responding to climate change involves mitigation and adaptation. Mitigation – limiting climate change – consists of reducing greenhouse gas emissions and removing them from the atmosphere; methods include the development and deployment of low-carbon energy sources such as wind and solar, a phase-out of coal, enhanced energy efficiency, reforestation, and forest preservation. Adaptation consists of adjusting to actual or expected climate, such as through improved coastline protection, better disaster management, assisted colonisation, and the development of more resistant crops. Adaptation alone cannot avert the risk of "severe, widespread and irreversible" impacts.

Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2.0 °C (3.6 °F)" through mitigation efforts. However, with pledges made under the Agreement, global warming would still reach about 2.8 °C (5.0 °F) by the end of the century. Limiting warming to 1.5 °C (2.7 °F) would require halving emissions by 2030 and achieving near-zero emissions by 2050.

Discussed on

🔗 Thokcha (Meteorite Amulets)

🔗 Geology 🔗 Geology/Meteorites

Thokcha (Tibetan: ཐོག་ལྕགས, Wylie: thog lcags; also alternatively Tibetan: གནམ་ལྕགས, Wylie: gnam lcags) are tektites and meteorites which serve as amulets. Typically high in iron content, these are traditionally believed to contain a magical, protective power comparable to Tibetan dzi beads. Most thokcha are made of a copper alloy.

The use of meteoric iron has been common throughout the history of ferrous metallurgy. Historically, thokcha were prized for the metallurgical fabrication of weapons, musical instruments, and sacred tools, such as the phurba. Thokcha are an auspicious addition in the metallurgical fabrication of sacred objects cast from panchaloha.

Writer Robert Beer regards meteoric iron as "the supreme substance for forging the physical representation of the vajra or other iron weapons." It was believed that these amulets had been tempered by the celestial gods before falling to Earth. Beer describes the metal falling from space as a metaphor for "the indivisibility of form and emptiness." Many meteorite fragments can be found in Tibet due to its high altitude and open landscape.

Discussed on

🔗 Diatoms make 20% of Earth's oxygen and can double in population every 24 hours

🔗 Geology 🔗 Marine life 🔗 Algae

Diatoms (diá-tom-os 'cut in half', from diá, 'through' or 'apart'; and the root of tém-n-ō, 'I cut'.) are a major group of algae, specifically microalgae, found in the oceans, waterways and soils of the world. Living diatoms make up a significant portion of the Earth's biomass: they generate about 20 to 50 percent of the oxygen produced on the planet each year, take in over 6.7 billion metric tons of silicon each year from the waters in which they live, and contribute nearly half of the organic material found in the oceans. The shells of dead diatoms can reach as much as a half-mile (800m) deep on the ocean floor, and the entire Amazon basin is fertilized annually by 27 million tons of diatom shell dust transported by transatlantic winds from the African Sahara, much of it from the Bodélé Depression, which was once made up a system of fresh-water lakes.

Diatoms are unicellular: they occur either as solitary cells or in colonies, which can take the shape of ribbons, fans, zigzags, or stars. Individual cells range in size from 2 to 200 micrometers. In the presence of adequate nutrients and sunlight, an assemblage of living diatoms doubles approximately every 24 hours by asexual multiple fission; the maximum life span of individual cells is about six days. Diatoms have two distinct shapes: a few (centric diatoms) are radially symmetric, while most (pennate diatoms) are broadly bilaterally symmetric. A unique feature of diatom anatomy is that they are surrounded by a cell wall made of silica (hydrated silicon dioxide), called a frustule. These frustules have structural coloration due to their photonic nanostructure, prompting them to be described as "jewels of the sea" and "living opals". Movement in diatoms primarily occurs passively as a result of both water currents and wind-induced water turbulence; however, male gametes of centric diatoms have flagella, permitting active movement for seeking female gametes. Similar to plants, diatoms convert light energy to chemical energy by photosynthesis, although this shared autotrophy evolved independently in both lineages. Unusually for autotrophic organisms, diatoms possess a urea cycle, a feature that they share with animals, although this cycle is used to different metabolic ends in diatoms. The family Rhopalodiaceae also possess a cyanobacterial endosymbiont called a spheroid body. This endosymbiont has lost its photosynthetic properties, but has kept its ability to perform nitrogen fixation, allowing the diatom to fix atmospheric nitrogen.

The study of diatoms is a branch of phycology. Diatoms are classified as eukaryotes, organisms with a membrane-bound cell nucleus, that separates them from the prokaryotes archaea and bacteria. Diatoms are a type of plankton called phytoplankton, the most common of the plankton types. Diatoms also grow attached to benthic substrates, floating debris, and on macrophytes. They comprise an integral component of the periphyton community. Another classification divides plankton into eight types based on size: in this scheme, diatoms are classed as microalgae. Several systems for classifying the individual diatom species exist. Fossil evidence suggests that diatoms originated during or before the early Jurassic period, which was about 150 to 200 million years ago.

Diatoms are used to monitor past and present environmental conditions, and are commonly used in studies of water quality. Diatomaceous earth (diatomite) is a collection of diatom shells found in the earth's crust. They are soft, silica-containing sedimentary rocks which are easily crumbled into a fine powder and typically have a particle size of 10 to 200 μm. Diatomaceous earth is used for a variety of purposes including for water filtration, as a mild abrasive, in cat litter, and as a dynamite stabilizer.

🔗 Volcanic Winter

🔗 Environment 🔗 Volcanoes 🔗 Geology 🔗 Weather 🔗 Weather/Non-tropical storms

A volcanic winter is a reduction in global temperatures caused by volcanic ash and droplets of sulfuric acid and water obscuring the Sun and raising Earth's albedo (increasing the reflection of solar radiation) after a large, particularly explosive volcanic eruption. Long-term cooling effects are primarily dependent upon injection of sulfur gases into the stratosphere where they undergo a series of reactions to create sulfuric acid which can nucleate and form aerosols. Volcanic stratospheric aerosols cool the surface by reflecting solar radiation and warm the stratosphere by absorbing terrestrial radiation. The variations in atmospheric warming and cooling result in changes in tropospheric and stratospheric circulation.

🔗 The Tunguska Event

🔗 Soviet Union 🔗 Russia 🔗 Disaster management 🔗 Skepticism 🔗 Astronomy 🔗 Russia/science and education in Russia 🔗 Geology 🔗 Russia/physical geography of Russia 🔗 Russia/history of Russia 🔗 Paranormal

The Tunguska event was a massive ~12 megaton explosion that occurred near the Podkamennaya Tunguska River in Yeniseysk Governorate (now Krasnoyarsk Krai), Russia, on the morning of June 30, 1908. The explosion over the sparsely populated Eastern Siberian Taiga flattened an estimated 80 million trees over an area of 2,150 km2 (830 sq mi) of forest, and eyewitness reports suggest that at least three people may have died in the event. The explosion is generally attributed to the air burst of a stony meteoroid about 50–60 metres (160–200 feet) in size.: p. 178  The meteoroid approached from the east-southeast, and likely with a relatively high speed of about 27 km/s. It is classified as an impact event, even though no impact crater has been found; the object is thought to have disintegrated at an altitude of 5 to 10 kilometres (3 to 6 miles) rather than to have hit the surface of the Earth.

The Tunguska event is the largest impact event on Earth in recorded history, though much larger impacts have occurred in prehistoric times. An explosion of this magnitude would be capable of destroying a large metropolitan area. It has been mentioned numerous times in popular culture, and has also inspired real-world discussion of asteroid impact avoidance.

🔗 Turin Papyrus Map

🔗 Ancient Egypt 🔗 Maps 🔗 Geology

The Turin Papyrus Map is an ancient Egyptian map, generally considered the oldest surviving map of topographical interest from the ancient world. It is drawn on a papyrus reportedly discovered at Deir el-Medina in Thebes, collected by Bernardino Drovetti (known as Napoleon's Proconsul) in Egypt sometime before 1824 AD and now preserved in Turin's Museo Egizio. The map was drawn about 1150 BC by the well-known Scribe-of-the-Tomb Amennakhte, son of Ipuy. It was prepared for Ramesses IV's quarrying expedition to the Wadi Hammamat in the Eastern Desert, which exposes Precambrian rocks of the Arabian-Nubian Shield. The purpose of the expedition was to obtain blocks of bekhen-stone (metagraywacke sandstone) to be used for statues of the king.