Topic: Sanitation

You are looking at all articles with the topic "Sanitation". We found 4 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

🔗 Bidet Shower – Hand Bidet, Commode/Toilet/Bum Shower, Health Faucet, Bum Gun

🔗 Sanitation

A bidet shower—also known as a handheld bidet, commode shower, toilet shower, health faucet, bum shower, shatafa (from the Arabic: شَطَّافَة [ʃɑtˤˈtˤɑːfɑ], "rinser") or bum gun—is a hand-held triggered nozzle that is placed near the toilet and delivers a spray of water used for anal cleansing and cleaning of the genitals after using the toilet for defecation and urination, popularised by Arab nations where the bidet shower is a common bathroom accessory. The device is similar to that of a kitchen sink sprayer.

In predominantly Catholic countries, the Muslim world, in the Eastern Orthodox and Hindu cultures, and in some Protestant countries such as Finland, water is usually used for anal cleansing, using a jet (bidet shower, bidet) or vessel, and a person's hand (in some places only the left hand is used).

🔗 Shit Flow Diagram

🔗 Sanitation

A shit flow diagram (also called excreta flow diagram or SFD) is a high level technical drawing used to display how excreta moves through a location, and functions as a tool to identify where improvements are needed. The diagram has a particular focus on treatment of the waste, and its final disposal or use. SFDs are most often used in developing countries.

Discussed on

🔗 Climate Change

🔗 Climate change 🔗 Environment 🔗 Geography 🔗 Antarctica 🔗 Arctic 🔗 Geology 🔗 Globalization 🔗 Science Policy 🔗 Weather 🔗 Sanitation

Climate change includes both global warming driven by human-induced emissions of greenhouse gases and the resulting large-scale shifts in weather patterns. Though there have been previous periods of climatic change, since the mid-20th century humans have had an unprecedented impact on Earth's climate system and caused change on a global scale.

The largest driver of warming is the emission of gases that create a greenhouse effect, of which more than 90% are carbon dioxide (CO
) and methane. Fossil fuel burning (coal, oil, and natural gas) for energy consumption is the main source of these emissions, with additional contributions from agriculture, deforestation, and manufacturing. The human cause of climate change is not disputed by any scientific body of national or international standing. Temperature rise is accelerated or tempered by climate feedbacks, such as loss of sunlight-reflecting snow and ice cover, increased water vapour (a greenhouse gas itself), and changes to land and ocean carbon sinks.

Temperature rise on land is about twice the global average increase, leading to desert expansion and more common heat waves and wildfires. Temperature rise is also amplified in the Arctic, where it has contributed to melting permafrost, glacial retreat and sea ice loss. Warmer temperatures are increasing rates of evaporation, causing more intense storms and weather extremes. Impacts on ecosystems include the relocation or extinction of many species as their environment changes, most immediately in coral reefs, mountains, and the Arctic. Climate change threatens people with food insecurity, water scarcity, flooding, infectious diseases, extreme heat, economic losses, and displacement. These impacts have led the World Health Organization to call climate change the greatest threat to global health in the 21st century. Even if efforts to minimise future warming are successful, some effects will continue for centuries, including rising sea levels, rising ocean temperatures, and ocean acidification.

Many of these impacts are already felt at the current level of warming, which is about 1.2 °C (2.2 °F). The Intergovernmental Panel on Climate Change (IPCC) has issued a series of reports that project significant increases in these impacts as warming continues to 1.5 °C (2.7 °F) and beyond. Additional warming also increases the risk of triggering critical thresholds called tipping points. Responding to climate change involves mitigation and adaptation. Mitigation – limiting climate change – consists of reducing greenhouse gas emissions and removing them from the atmosphere; methods include the development and deployment of low-carbon energy sources such as wind and solar, a phase-out of coal, enhanced energy efficiency, reforestation, and forest preservation. Adaptation consists of adjusting to actual or expected climate, such as through improved coastline protection, better disaster management, assisted colonisation, and the development of more resistant crops. Adaptation alone cannot avert the risk of "severe, widespread and irreversible" impacts.

Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2.0 °C (3.6 °F)" through mitigation efforts. However, with pledges made under the Agreement, global warming would still reach about 2.8 °C (5.0 °F) by the end of the century. Limiting warming to 1.5 °C (2.7 °F) would require halving emissions by 2030 and achieving near-zero emissions by 2050.

Discussed on

🔗 Nematode revived after 46,000 years in Siberian permafrost

🔗 Horticulture and Gardening 🔗 Animals 🔗 Sanitation

The nematodes ( NEM-ə-tohdz or NEEM-; Greek: Νηματώδη; Latin: Nematoda) roundworms or eelworms, constitute the phylum Nematoda. They are a diverse animal phylum inhabiting a broad range of environments. Most species are free-living, feeding on microorganisms, but there are many that are parasitic. The parasitic worms (helminths) are the cause of soil-transmitted helminthiases.

They are taxonomically classified along with arthropods, tardigrades and other moulting animals in the clade Ecdysozoa. Unlike the vaguely similar flatworms, nematodes have a tubular digestive system, with openings at both ends. Like tardigrades, they have a reduced number of Hox genes, but their sister phylum Nematomorpha has kept the ancestral protostome Hox genotype, which shows that the reduction has occurred within the nematode phylum.

Nematode species can be difficult to distinguish from one another. Consequently, estimates of the number of nematode species are uncertain. A 2013 survey of animal biodiversity published in the mega journal Zootaxa puts this figure at over 25,000. Estimates of the total number of extant species are subject to even greater variation. A widely referenced article published in 1993 estimated there may be over 1 million species of nematode. A subsequent publication challenged this claim, estimating the figure to be at least 40,000 species. Although the highest estimates (up to 100 million species) have since been deprecated, estimates supported by rarefaction curves, together with the use of DNA barcoding and the increasing acknowledgment of widespread cryptic species among nematodes, have placed the figure closer to 1 million species.

Nematodes have successfully adapted to nearly every ecosystem: from marine (salt) to fresh water, soils, from the polar regions to the tropics, as well as the highest to the lowest of elevations. They are ubiquitous in freshwater, marine, and terrestrial environments, where they often outnumber other animals in both individual and species counts, and are found in locations as diverse as mountains, deserts, and oceanic trenches. They are found in every part of the earth's lithosphere, even at great depths, 0.9–3.6 km (3,000–12,000 ft) below the surface of the Earth in gold mines in South Africa. They represent 90% of all animals on the ocean floor. In total, 4.4 × 1020 nematodes inhabit the Earth's topsoil, or approximately 60 billion for each human, with the highest densities observed in tundra and boreal forests. Their numerical dominance, often exceeding a million individuals per square meter and accounting for about 80% of all individual animals on earth, their diversity of lifecycles, and their presence at various trophic levels point to an important role in many ecosystems. They have been shown to play crucial roles in polar ecosystems. The roughly 2,271 genera are placed in 256 families. The many parasitic forms include pathogens in most plants and animals. A third of the genera occur as parasites of vertebrates; about 35 nematode species occur in humans.

Nathan Cobb, a nematologist, described the ubiquity of nematodes on Earth thus:

In short, if all the matter in the universe except the nematodes were swept away, our world would still be dimly recognizable, and if, as disembodied spirits, we could then investigate it, we should find its mountains, hills, vales, rivers, lakes, and oceans represented by a film of nematodes. The location of towns would be decipherable since, for every massing of human beings, there would be a corresponding massing of certain nematodes. Trees would still stand in ghostly rows representing our streets and highways. The location of the various plants and animals would still be decipherable, and, had we sufficient knowledge, in many cases even their species could be determined by an examination of their erstwhile nematode parasites.(p 472)