Topic: Biology (Page 3)

You are looking at all articles with the topic "Biology". We found 28 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

πŸ”— Boring Billion

πŸ”— Biology πŸ”— Palaeontology πŸ”— Geology

The Boring Billion, otherwise known as the Mid Proterozoic and Earth's Middle Ages, is the time period between 1.8 and 0.8 billion years ago (Ga) spanning the middle Proterozoic eon, characterized by more or less tectonic stability, climatic stasis, and slow biological evolution. It is bordered by two different oxygenation and glacial events, but the Boring Billion itself had very low oxygen levels and no evidence of glaciation.

The oceans may have been oxygen- and nutrient-poor and sulfidic (euxinia), populated by mainly anoxygenic purple bacteria, a type of chlorophyll-based photosynthetic bacteria which uses hydrogen sulfide (H2S) instead of water and produces sulfur instead of oxygen. This is known as a Canfield ocean. Such composition may have caused the oceans to be black- and milky-turquoise instead of blue. (By contrast, during the much earlier Purple Earth phase the photosynthesis was retinal-based.)

Despite such adverse conditions, eukaryotes may have evolved around the beginning of the Boring Billion, and adopted several novel adaptations, such as various organelles, multicellularity, and possibly sexual reproduction, and diversified into plants, animals, and fungi at the end of this time interval. Such advances may have been important precursors to the evolution of large, complex life later in the Ediacaran and Phanerozoic. Nonetheless, prokaryotic cyanobacteria were the dominant lifeforms during this time, and likely supported an energy-poor food-web with a small number of protists at the apex level. The land was likely inhabited by prokaryotic cyanobacteria and eukaryotic proto-lichens, the latter more successful here probably due to the greater availability of nutrients than in offshore ocean waters.

Discussed on

πŸ”— Emergence

πŸ”— Biology πŸ”— Physics πŸ”— Economics πŸ”— Philosophy πŸ”— Systems πŸ”— Philosophy/Philosophy of science πŸ”— Philosophy/Epistemology

In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own. These properties or behaviors emerge only when the parts interact in a wider whole. For example, smooth forward motion emerges when a bicycle and its rider interoperate, but neither part can produce the behavior on their own.

Emergence plays a central role in theories of integrative levels and of complex systems. For instance, the phenomenon of life as studied in biology is an emergent property of chemistry, and psychological phenomena emerge from the neurobiological phenomena of living things.

In philosophy, theories that emphasize emergent properties have been called emergentism. Almost all accounts of emergentism include a form of epistemic or ontological irreducibility to the lower levels.

Discussed on

πŸ”— Biology and political orientation

πŸ”— Biology πŸ”— Politics πŸ”— Psychology πŸ”— Neuroscience πŸ”— Genetics πŸ”— Physiology πŸ”— Physiology/neuro πŸ”— Evolutionary biology πŸ”— Conservatism

A number of studies have found that biology can be linked with political orientation. This means that biology is a possible factor in political orientation but may also mean that the ideology a person identifies with changes a person's ability to perform certain tasks. Many of the studies linking biology to politics remain controversial and unreplicated, although the overall body of evidence is growing.

Discussed on

πŸ”— Xenobot

πŸ”— Biology πŸ”— Engineering πŸ”— Science

Xenobots, named after the African clawed frog (Xenopus laevis), are synthetic organisms that are automatically designed by computers to perform some desired function and built by combining together different biological tissues.

Xenobots are less than a 1 millimeter (0.039 inches) wide and composed of just two things: skin cells and heart muscle cells, both of which are derived from stem cells harvested from early (blastula stage) frog embryos. The skin cells provide rigid support and the heart cells act as small motors, contracting and expanding in volume to propel the xenobot forward. The shape of a xenobot's body, and its distribution of skin and heart cells, are automatically designed in simulation to perform a specific task, using a process of trial and error (an evolutionary algorithm). Xenobots have been designed to walk, swim, push pellets, carry payloads, and work together in a swarm to aggregate debris scattered along the surface of their dish into neat piles. They can survive for weeks without food and heal themselves after lacerations.

πŸ”— Folding@Home

πŸ”— Computing πŸ”— Biology πŸ”— Computing/Software πŸ”— Stanford University πŸ”— Pharmacology πŸ”— Molecular Biology πŸ”— Molecular Biology/Molecular and Cell Biology πŸ”— Molecular Biology/Computational Biology

Folding@home (FAH or F@h) is a distributed computing project aimed to help scientists develop new therapeutics for a variety of diseases by the means of simulating protein dynamics. This includes the process of protein folding and the movements of proteins, and is reliant on simulations run on volunteers' personal computers. Folding@home is currently based at the University of Pennsylvania and led by Greg Bowman, a former student of Vijay Pande.

The project utilizes graphics processing units (GPUs), central processing units (CPUs), and ARM processors like those on the Raspberry Pi for distributed computing and scientific research. The project uses statistical simulation methodology that is a paradigm shift from traditional computing methods. As part of the client–server model network architecture, the volunteered machines each receive pieces of a simulation (work units), complete them, and return them to the project's database servers, where the units are compiled into an overall simulation. Volunteers can track their contributions on the Folding@home website, which makes volunteers' participation competitive and encourages long-term involvement.

Folding@home is one of the world's fastest computing systems. With heightened interest in the project as a result of the COVID-19 pandemic, the system achieved a speed of approximately 1.22 exaflops by late March 2020 and reached 2.43 exaflops by April 12, 2020, making it the world's first exaflop computing system. This level of performance from its large-scale computing network has allowed researchers to run computationally costly atomic-level simulations of protein folding thousands of times longer than formerly achieved. Since its launch on OctoberΒ 1, 2000, Folding@home was involved in the production of 226 scientific research papers. Results from the project's simulations agree well with experiments.

Discussed on

πŸ”— Wikipedia tests a new UI design

πŸ”— Religion πŸ”— Biology πŸ”— History of Science πŸ”— Science πŸ”— Evolutionary biology πŸ”— Molecular Biology πŸ”— Creationism πŸ”— Tree of Life πŸ”— Molecular Biology/Genetics

Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes that are passed on from parent to offspring during reproduction. Different characteristics tend to exist within any given population as a result of mutation, genetic recombination and other sources of genetic variation. Evolution occurs when evolutionary processes such as natural selection (including sexual selection) and genetic drift act on this variation, resulting in certain characteristics becoming more common or rare within a population. The evolutionary pressures that determine whether a characteristic would be common or rare within a population constantly change, resulting in a change in heritable characteristics arising over successive generations. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms and molecules.

The theory of evolution by natural selection was conceived independently by Charles Darwin and Alfred Russel Wallace in the mid-19th century and was set out in detail in Darwin's book On the Origin of Species. Evolution by natural selection was first demonstrated by the observation that more offspring are often produced than can possibly survive. This is followed by three observable facts about living organisms: (1) traits vary among individuals with respect to their morphology, physiology and behaviour (phenotypic variation), (2) different traits confer different rates of survival and reproduction (differential fitness) and (3) traits can be passed from generation to generation (heritability of fitness). Thus, in successive generations members of a population are more likely to be replaced by the progenies of parents with favourable characteristics that have enabled them to survive and reproduce in their respective environments. In the early 20th century, other competing ideas of evolution such as mutationism and orthogenesis were refuted as the modern synthesis reconciled Darwinian evolution with classical genetics, which established adaptive evolution as being caused by natural selection acting on Mendelian genetic variation.

All life on Earth shares a last universal common ancestor (LUCA) that lived approximately 3.5–3.8Β billion years ago. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilised multicellular organisms. Existing patterns of biodiversity have been shaped by repeated formations of new species (speciation), changes within species (anagenesis) and loss of species (extinction) throughout the evolutionary history of life on Earth. Morphological and biochemical traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct phylogenetic trees.

Evolutionary biologists have continued to study various aspects of evolution by forming and testing hypotheses as well as constructing theories based on evidence from the field or laboratory and on data generated by the methods of mathematical and theoretical biology. Their discoveries have influenced not just the development of biology but numerous other scientific and industrial fields, including agriculture, medicine, and computer science.

Discussed on

πŸ”— Magnetosome

πŸ”— Biology πŸ”— Physics πŸ”— Biophysics

Magnetosomes are membranous structures present in magnetotactic bacteria (MTB). They contain iron-rich magnetic particles that are enclosed within a lipid bilayer membrane. Each magnetosome can often contain 15 to 20 magnetite crystals that form a chain which acts like a compass needle to orient magnetotactic bacteria in geomagnetic fields, thereby simplifying their search for their preferred microaerophilic environments. Recent research has shown that magnetosomes are invaginations of the inner membrane and not freestanding vesicles. Magnetite-bearing magnetosomes have also been found in eukaryotic magnetotactic algae, with each cell containing several thousand crystals.

Overall, magnetosome crystals have high chemical purity, narrow size ranges, species-specific crystal morphologies and exhibit specific arrangements within the cell. These features indicate that the formation of magnetosomes is under precise biological control and is mediated biomineralization.

Magnetotactic bacteria usually mineralize either iron oxide magnetosomes, which contain crystals of magnetite (Fe3O4), or iron sulfide magnetosomes, which contain crystals of greigite (Fe3S4). Several other iron sulfide minerals have also been identified in iron sulfide magnetosomesβ€”including mackinawite (tetragonal FeS) and a cubic FeSβ€”which are thought to be precursors of Fe3S4. One type of magnetotactic bacterium present at the oxic-anoxic transition zone (OATZ) of the southern basin of the Pettaquamscutt River Estuary, Narragansett, Rhode Island, United States is known to produce both iron oxide and iron sulfide magnetosomes.

πŸ”— Har Gobind Khorana

πŸ”— United States πŸ”— Biography πŸ”— Medicine πŸ”— Biology πŸ”— Biography/science and academia πŸ”— India πŸ”— Molecular and Cell Biology πŸ”— Medicine/Medical genetics πŸ”— United States/Asian Americans

Har Gobind Khorana (9 January 1922 – 9 November 2011) was an Indian-American biochemist. While on the faculty of the University of Wisconsin–Madison, he shared the 1968 Nobel Prize for Physiology or Medicine with Marshall W. Nirenberg and Robert W. Holley for research that showed the order of nucleotides in nucleic acids, which carry the genetic code of the cell and control the cell's synthesis of proteins. Khorana and Nirenberg were also awarded the Louisa Gross Horwitz Prize from Columbia University in the same year.

Born in British India, Khorana served on the faculties of three universities in North America. He became a naturalized citizen of the United States in 1966, and received the National Medal of Science in 1987.