🔗 Xenobot

🔗 Biology 🔗 Engineering 🔗 Science

Xenobots, named after the African clawed frog (Xenopus laevis), are synthetic organisms that are automatically designed by computers to perform some desired function and built by combining together different biological tissues.

Xenobots are less than a 1 millimeter (0.039 inches) wide and composed of just two things: skin cells and heart muscle cells, both of which are derived from stem cells harvested from early (blastula stage) frog embryos. The skin cells provide rigid support and the heart cells act as small motors, contracting and expanding in volume to propel the xenobot forward. The shape of a xenobot's body, and its distribution of skin and heart cells, are automatically designed in simulation to perform a specific task, using a process of trial and error (an evolutionary algorithm). Xenobots have been designed to walk, swim, push pellets, carry payloads, and work together in a swarm to aggregate debris scattered along the surface of their dish into neat piles. They can survive for weeks without food and heal themselves after lacerations.