Topic: Biophysics

You are looking at all articles with the topic "Biophysics". We found 3 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

πŸ”— Optical Tweezers

πŸ”— Physics πŸ”— Biophysics

Optical tweezers (originally called single-beam gradient force trap) are scientific instruments that use a highly focused laser beam to provide an attractive or repulsive force (typically on the order of piconewtons), depending on the relative refractive index between particle and surrounding medium; these forces can be used to physically hold and move microscopic objects, in a manner similar to tweezers. They are able to trap and manipulate small particles, whose size is typically in microns, including dielectric and absorbing particles. Optical tweezers have been particularly successful in studying a variety of biological systems in recent years.

Discussed on

πŸ”— Earth may be constantly producing oil

πŸ”— Biography πŸ”— Physics πŸ”— Biography/science and academia πŸ”— Astronomy πŸ”— Physics/Biographies πŸ”— Biophysics

Thomas Gold (also known as Tommy Gold), (May 22, 1920 – June 22, 2004) was an Austrian-born astrophysicist, a professor of astronomy at Cornell University, a member of the U.S. National Academy of Sciences, and a Fellow of the Royal Society (London). Gold was one of three young Cambridge scientists who in 1948 proposed the now mostly abandoned "steady state" hypothesis of the universe. Gold's work crossed academic and scientific boundaries, into biophysics, astronomy, aerospace engineering, and geophysics.

Discussed on

πŸ”— Magnetosome

πŸ”— Biology πŸ”— Physics πŸ”— Biophysics

Magnetosomes are membranous structures present in magnetotactic bacteria (MTB). They contain iron-rich magnetic particles that are enclosed within a lipid bilayer membrane. Each magnetosome can often contain 15 to 20 magnetite crystals that form a chain which acts like a compass needle to orient magnetotactic bacteria in geomagnetic fields, thereby simplifying their search for their preferred microaerophilic environments. Recent research has shown that magnetosomes are invaginations of the inner membrane and not freestanding vesicles. Magnetite-bearing magnetosomes have also been found in eukaryotic magnetotactic algae, with each cell containing several thousand crystals.

Overall, magnetosome crystals have high chemical purity, narrow size ranges, species-specific crystal morphologies and exhibit specific arrangements within the cell. These features indicate that the formation of magnetosomes is under precise biological control and is mediated biomineralization.

Magnetotactic bacteria usually mineralize either iron oxide magnetosomes, which contain crystals of magnetite (Fe3O4), or iron sulfide magnetosomes, which contain crystals of greigite (Fe3S4). Several other iron sulfide minerals have also been identified in iron sulfide magnetosomesβ€”including mackinawite (tetragonal FeS) and a cubic FeSβ€”which are thought to be precursors of Fe3S4. One type of magnetotactic bacterium present at the oxic-anoxic transition zone (OATZ) of the southern basin of the Pettaquamscutt River Estuary, Narragansett, Rhode Island, United States is known to produce both iron oxide and iron sulfide magnetosomes.