New Articles (Page 335)

To stay up to date you can also follow on Mastodon.

🔗 Heisenbug

🔗 Computing 🔗 Computing/Software

In computer programming jargon, a heisenbug is a software bug that seems to disappear or alter its behavior when one attempts to study it. The term is a pun on the name of Werner Heisenberg, the physicist who first asserted the observer effect of quantum mechanics, which states that the act of observing a system inevitably alters its state. In electronics the traditional term is probe effect, where attaching a test probe to a device changes its behavior.

Similar terms, such as bohrbug, mandelbug, hindenbug, and schrödinbug (see the section on related terms) have been occasionally proposed for other kinds of unusual software bugs, sometimes in jest; however, unlike the term heisenbug, they are not widely known or used.

Discussed on

🔗 Failed intercept at Dhahran caused by a software error in handling of timestamps

🔗 Military history 🔗 Military history/North American military history 🔗 Military history/United States military history 🔗 Military history/Military science, technology, and theory 🔗 Military history/Weaponry

The MIM-104 Patriot is a surface-to-air missile (SAM) system, the primary of its kind used by the United States Army and several allied nations. It is manufactured by the U.S. defense contractor Raytheon and derives its name from the radar component of the weapon system. The AN/MPQ-53 at the heart of the system is known as the "Phased Array Tracking Radar to Intercept on Target" which is a backronym for PATRIOT. The Patriot System replaced the Nike Hercules system as the U.S. Army's primary High to Medium Air Defense (HIMAD) system, and replaced the MIM-23 Hawk system as the U.S. Army's medium tactical air defense system. In addition to these roles, Patriot has been given the function of the U.S. Army's anti-ballistic missile (ABM) system, which is now Patriot's primary mission. The system is expected to stay fielded until at least 2040.

Patriot uses an advanced aerial interceptor missile and high-performance radar systems. Patriot was developed at Redstone Arsenal in Huntsville, Alabama, which had previously developed the Safeguard ABM system and its component Spartan and hypersonic speed Sprint missiles. The symbol for Patriot is a drawing of a Revolutionary War-era Minuteman.

Patriot systems have been sold to the Netherlands, Poland, Germany, Egypt, Japan, Israel, Saudi Arabia, Kuwait, Republic of China (Taiwan), Greece, Spain, United Arab Emirates, Qatar and Romania. South Korea purchased several second-hand Patriot systems from Germany after North Korea test-launched ballistic missiles to the Sea of Japan and proceeded with underground nuclear testing in 2006. Jordan also purchased several second-hand Patriot systems from Germany. Poland hosts training rotations of a battery of U.S. Patriot launchers. This started in the town of Morąg in May 2010 but was later moved further from the Russian border to Toruń and Ustka due to Russian objections. On December 4, 2012, NATO authorized the deployment of Patriot missile launchers in Turkey to protect the country from missiles fired in the civil war in neighboring Syria. Patriot was one of the first tactical systems in the U.S. Department of Defense's (DoD) to employ lethal autonomy in combat.

The Patriot system gained notoriety during the Persian Gulf War of 1991 with the claimed engagement of over 40 Iraqi Scud missiles, but those claims became a source of controversy. The system was successfully used against Iraqi missiles in 2003 Iraq War, and has been also used by Saudi and Emirati forces in the Yemen conflict against Houthi missile attacks. The Patriot system achieved its first undisputed shootdowns of enemy aircraft in the service of the Israeli Air Defense Command. Israeli MIM-104D batteries shot down two Hamas UAVs during Operation Protective Edge on August 31, 2014 and later, on September 23, 2014, an Israeli Patriot battery shot down a Syrian Air Force Sukhoi Su-24 which had penetrated Israeli airspace, achieving the first shootdown of a manned enemy aircraft in the world for the system.

🔗 Jevons Paradox

🔗 Environment 🔗 Economics

In economics, the Jevons paradox (; sometimes Jevons effect) occurs when technological progress or government policy increases the efficiency with which a resource is used (reducing the amount necessary for any one use), but the rate of consumption of that resource rises due to increasing demand. The Jevons paradox is perhaps the most widely known paradox in environmental economics. However, governments and environmentalists generally assume that efficiency gains will lower resource consumption, ignoring the possibility of the paradox arising.

In 1865, the English economist William Stanley Jevons observed that technological improvements that increased the efficiency of coal-use led to the increased consumption of coal in a wide range of industries. He argued that, contrary to common intuition, technological progress could not be relied upon to reduce fuel consumption.

The issue has been re-examined by modern economists studying consumption rebound effects from improved energy efficiency. In addition to reducing the amount needed for a given use, improved efficiency also lowers the relative cost of using a resource, which increases the quantity demanded. This counteracts (to some extent) the reduction in use from improved efficiency. Additionally, improved efficiency increases real incomes and accelerates economic growth, further increasing the demand for resources. The Jevons paradox occurs when the effect from increased demand predominates, and improved efficiency increases the speed at which resources are used.

Considerable debate exists about the size of the rebound in energy efficiency and the relevance of the Jevons paradox to energy conservation. Some dismiss the paradox, while others worry that it may be self-defeating to pursue sustainability by increasing energy efficiency. Some environmental economists have proposed that efficiency gains be coupled with conservation policies that keep the cost of use the same (or higher) to avoid the Jevons paradox. Conservation policies that increase cost of use (such as cap and trade or green taxes) can be used to control the rebound effect.

Discussed on

🔗 The “Oh-My-God Particle”

🔗 Physics 🔗 Astronomy

The Oh-My-God particle was the highest-energy cosmic ray detected at the time (15 October 1991) by the Fly's Eye detector in Dugway Proving Ground, Utah, US. Its energy was estimated as (3.2±0.9)×1020 eV, or 51 J. This is 20 million times more energetic than the highest energy measured in electromagnetic radiation emitted by an extragalactic object and 1020 (100 quintillion) times the photon energy of visible light, equivalent to a 142-gram (5 oz) baseball travelling at about 26 m/s (94 km/h; 58 mph). Although higher energy cosmic rays have been detected since then, this particle's energy was unexpected, and called into question theories of that era about the origin and propagation of cosmic rays.

Assuming it was a proton, this particle traveled at 99.99999999999999999999951% of the speed of light, its Lorentz factor was 3.2×1011 and its rapidity was 27.1. At this speed, if a photon were travelling with the particle, it would take over 215,000 years for the photon to gain a 1 cm lead as seen in Earth's reference frame.

The energy of this particle is some 40 million times that of the highest energy protons that have been produced in any terrestrial particle accelerator. However, only a small fraction of this energy would be available for an interaction with a proton or neutron on Earth, with most of the energy remaining in the form of kinetic energy of the products of the interaction. The effective energy available for such a collision is 2Emc2, where E is the particle's energy and mc2 is the mass energy of the proton. For the Oh-My-God particle, this gives 7.5×1014 eV, roughly 60 times the collision energy of the Large Hadron Collider.

While the particle's energy was higher than anything achieved in terrestrial accelerators, it was still about 40 million times lower than the Planck energy. Particles of such energy would be required in order to explore the Planck scale. A proton with that much energy would travel 1.665×1015 times closer to the speed of light than the Oh-My-God particle. As viewed from Earth it would take about 3.579×1020 years, or 2.59×1010 times the current age of the universe, for a photon to gain a 1 cm lead over a Planck energy proton as observed in Earth's reference frame.

Since the first observation, at least 72 similar (energy > 5.7×1019 eV) events have been recorded, confirming the phenomenon. These ultra-high-energy cosmic ray particles are very rare; the energy of most cosmic ray particles is between 10 MeV and 10 GeV. More recent studies using the Telescope Array have suggested a source for the particles within a 20-degree radius "warm spot" in the direction of the constellation Ursa Major.

Discussed on

🔗 Prince Rupert's cube

🔗 Mathematics

In geometry, Prince Rupert's cube (named after Prince Rupert of the Rhine) is the largest cube that can pass through a hole cut through a unit cube, i.e. through a cube whose sides have length 1, without splitting the cube into two pieces. Its side length is approximately 6% larger than that of the unit cube through which it passes. The problem of finding the largest square that lies entirely within a unit cube is closely related, and has the same solution.

The original proposition posed by Prince Rupert of the Rhine was that a cube could be passed through a hole made in another cube of the same size without splitting the cube into two pieces.

Discussed on

🔗 The Sokal Hoax

🔗 Skepticism 🔗 History of Science 🔗 Sociology

The Sokal affair, also called the Sokal hoax, was a scholarly publishing sting perpetrated by Alan Sokal, a physics professor at New York University and University College London. In 1996, Sokal submitted an article to Social Text, an academic journal of postmodern cultural studies. The submission was an experiment to test the journal's intellectual rigor and, specifically, to investigate whether "a leading North American journal of cultural studies—whose editorial collective includes such luminaries as Fredric Jameson and Andrew Ross—[would] publish an article liberally salted with nonsense if (a) it sounded good and (b) it flattered the editors' ideological preconceptions".

The article, "Transgressing the Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity", was published in the Social Text spring/summer 1996 "Science Wars" issue. It proposed that quantum gravity is a social and linguistic construct. At that time, the journal did not practice academic peer review and it did not submit the article for outside expert review by a physicist. Three weeks after its publication in May 1996, Sokal revealed in Lingua Franca that the article was a hoax.

The hoax sparked a debate about the scholarly merit of commentary on the physical sciences by those in the humanities; the influence of postmodern philosophy on social disciplines in general; academic ethics, including whether Sokal was wrong to deceive the editors and readers of Social Text; and whether Social Text had exercised appropriate intellectual rigor.

Discussed on

🔗 1 is not prime

🔗 Mathematics

A prime number (or a prime) is a natural number greater than 1 that cannot be formed by multiplying two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 6 is composite because it is the product of two numbers (2 × 3) that are both smaller than 6. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

The property of being prime is called primality. A simple but slow method of checking the primality of a given number n {\displaystyle n} , called trial division, tests whether n {\displaystyle n} is a multiple of any integer between 2 and n {\displaystyle {\sqrt {n}}} . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always produces the correct answer in polynomial time but is too slow to be practical. Particularly fast methods are available for numbers of special forms, such as Mersenne numbers. As of December 2018 the largest known prime number has 24,862,048 decimal digits.

There are infinitely many primes, as demonstrated by Euclid around 300 BC. No known simple formula separates prime numbers from composite numbers. However, the distribution of primes within the natural numbers in the large can be statistically modelled. The first result in that direction is the prime number theorem, proven at the end of the 19th century, which says that the probability of a randomly chosen number being prime is inversely proportional to its number of digits, that is, to its logarithm.

Several historical questions regarding prime numbers are still unsolved. These include Goldbach's conjecture, that every even integer greater than 2 can be expressed as the sum of two primes, and the twin prime conjecture, that there are infinitely many pairs of primes having just one even number between them. Such questions spurred the development of various branches of number theory, focusing on analytic or algebraic aspects of numbers. Primes are used in several routines in information technology, such as public-key cryptography, which relies on the difficulty of factoring large numbers into their prime factors. In abstract algebra, objects that behave in a generalized way like prime numbers include prime elements and prime ideals.

Discussed on

🔗 Elon Musk's Tesla Roadster

🔗 United States 🔗 Spaceflight 🔗 Automobiles

Elon Musk's Tesla Roadster is an electric sports car that served as the dummy payload for the February 2018 Falcon Heavy test flight and became an artificial satellite of the Sun. "Starman", a mannequin dressed in a spacesuit, occupies the driver's seat. The car and rocket are products of Tesla and SpaceX, respectively, both companies founded by Elon Musk. The 2008-model Roadster was previously used by Musk for commuting to work and is the only production car in space.

The car, mounted on the rocket's second stage, acquired enough velocity to escape Earth's gravity and enter an elliptical heliocentric orbit crossing the orbit of Mars. The orbit reaches a maximum distance from the Sun at aphelion of 1.66 astronomical units (au). During the early portion of the voyage outside the Earth's atmosphere, live video was transmitted back to the mission control center and live-streamed for slightly over four hours.

Advertising analysts noted Musk's sense of brand management and use of new media for his decision to launch a Tesla into space. While some commenters voiced concern that the car contributed to space debris, others saw it as a work of art. Musk explained he wanted to inspire the public about the "possibility of something new happening in space" as part of his larger vision for spreading humanity to other planets.

Discussed on

🔗 Blind Signature

🔗 Cryptography 🔗 Cryptography/Computer science

In cryptography a blind signature, as introduced by David Chaum, is a form of digital signature in which the content of a message is disguised (blinded) before it is signed. The resulting blind signature can be publicly verified against the original, unblinded message in the manner of a regular digital signature. Blind signatures are typically employed in privacy-related protocols where the signer and message author are different parties. Examples include cryptographic election systems and digital cash schemes.

An often-used analogy to the cryptographic blind signature is the physical act of a voter enclosing a completed anonymous ballot in a special carbon paper lined envelope that has the voter's credentials pre-printed on the outside. An official verifies the credentials and signs the envelope, thereby transferring their signature to the ballot inside via the carbon paper. Once signed, the package is given back to the voter, who transfers the now signed ballot to a new unmarked normal envelope. Thus, the signer does not view the message content, but a third party can later verify the signature and know that the signature is valid within the limitations of the underlying signature scheme.

Blind signatures can also be used to provide unlinkability, which prevents the signer from linking the blinded message it signs to a later un-blinded version that it may be called upon to verify. In this case, the signer's response is first "un-blinded" prior to verification in such a way that the signature remains valid for the un-blinded message. This can be useful in schemes where anonymity is required.

Blind signature schemes can be implemented using a number of common public key signing schemes, for instance RSA and DSA. To perform such a signature, the message is first "blinded", typically by combining it in some way with a random "blinding factor". The blinded message is passed to a signer, who then signs it using a standard signing algorithm. The resulting message, along with the blinding factor, can be later verified against the signer's public key. In some blind signature schemes, such as RSA, it is even possible to remove the blinding factor from the signature before it is verified. In these schemes, the final output (message/signature) of the blind signature scheme is identical to that of the normal signing protocol.

Discussed on

🔗 Ōmoto

🔗 Religion 🔗 Women's History 🔗 Japan 🔗 Japan/Religion 🔗 Religion/New religious movements 🔗 Japan/Shinto

Oomoto (大本, Ōmoto, Great Source, or Great Origin), also known as Oomoto-kyo (大本教, Ōmoto-kyō), is a religion founded in 1892 by Deguchi Nao (1836–1918), often categorised as a new Japanese religion originated from Shinto. The spiritual leaders of the movement have predominantly been women; however, Deguchi Onisaburō (1871–1948) has been considered an important figure in Omoto as a seishi (spiritual teacher). Since 2001, the movement has been guided by its fifth leader, Kurenai Deguchi.

Discussed on