Topic: Weather/Non-tropical storms

You are looking at all articles with the topic "Weather/Non-tropical storms". We found 3 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

πŸ”— Great California, Nevada, Oregon Flood of 1862

πŸ”— United States πŸ”— California πŸ”— Disaster management πŸ”— Oregon πŸ”— United States/Utah πŸ”— Weather πŸ”— Weather/Non-tropical storms πŸ”— Weather/Floods

The Great Flood of 1862 was the largest flood in the recorded history of Oregon, Nevada, and California, occurring from December 1861 to January 1862. It was preceded by weeks of continuous rains and snows in the very high elevations that began in Oregon in November 1861 and continued into January 1862. This was followed by a record amount of rain from January 9–12, and contributed to a flood that extended from the Columbia River southward in western Oregon, and through California to San Diego, and extended as far inland as Idaho in the Washington Territory, Nevada and Utah in the Utah Territory, and Arizona in the western New Mexico Territory. The event dumped an equivalent of 10 feet (3.0Β m) of water in California, in the form of rain and snow, over a period of 43 days. Immense snowfalls in the mountains of far western North America caused more flooding in Idaho, Arizona, New Mexico, as well as in Baja California and Sonora, Mexico the following spring and summer, as the snow melted.

The event was capped by a warm intense storm that melted the high snow load. The resulting snow-melt flooded valleys, inundated or swept away towns, mills, dams, flumes, houses, fences, and domestic animals, and ruined fields. It has been described as the worst disaster ever to strike California. The storms caused approximately $100 million (1861 USD) in damage, approximately equal to $3.117 billion (2021 USD). The governor, state legislature, and state employees were not paid for a year and a half. At least 4,000 people were estimated to have been killed in the floods in California, which was roughly 1% of the state population at the time.

Discussed on

πŸ”— Mediterranean tropical like Storm Daniel

πŸ”— Disaster management πŸ”— Africa πŸ”— Greece πŸ”— Turkey πŸ”— Bulgaria πŸ”— Africa/Libya πŸ”— Weather πŸ”— Weather/Non-tropical storms πŸ”— Weather/Floods πŸ”— Weather/Weather πŸ”— Africa/Egypt πŸ”— Weather/Tropical cyclones

Storm Daniel, also known as Cyclone Daniel, was the deadliest Mediterranean tropical-like cyclone ever recorded as well as the deadliest weather event during 2023. It caused catastrophic damage in Libya and also affected parts of southeastern Europe. Forming as a low-pressure system around 4Β September 2023, the storm affected Greece, Bulgaria and also Turkey with extensive flooding. The storm then organized as a Mediterranean Low and was designated as Storm Daniel, in which it soon acquired quasi-tropical characteristics (TLC) and moved toward the coast of Libya, where it caused catastrophic flooding before degenerating into a remnant low. The storm was the result of an Omega block, as a high-pressure zone became sandwiched between two zones of low pressure, the isobars shaping a Greek letter Ξ©.

Discussed on

πŸ”— Volcanic Winter

πŸ”— Environment πŸ”— Volcanoes πŸ”— Geology πŸ”— Weather πŸ”— Weather/Non-tropical storms

A volcanic winter is a reduction in global temperatures caused by volcanic ash and droplets of sulfuric acid and water obscuring the Sun and raising Earth's albedo (increasing the reflection of solar radiation) after a large, particularly explosive volcanic eruption. Long-term cooling effects are primarily dependent upon injection of sulfur gases into the stratosphere where they undergo a series of reactions to create sulfuric acid which can nucleate and form aerosols. Volcanic stratospheric aerosols cool the surface by reflecting solar radiation and warm the stratosphere by absorbing terrestrial radiation. The variations in atmospheric warming and cooling result in changes in tropospheric and stratospheric circulation.