Topic: Solar System
You are looking at all articles with the topic "Solar System". We found 20 matches.
Hint:
To view all topics, click here. Too see the most popular topics, click here instead.
MARS-500
The Mars-500 mission was a psychosocial isolation experiment conducted between 2007 and 2011 by Russia, the European Space Agency and China, in preparation for an unspecified future crewed spaceflight to the planet Mars. The experiment's facility was located at the Russian Academy of Sciences' Institute of Biomedical Problems (IBMP) in Moscow, Russia.
Between 2007 and 2011, three different crews of volunteers lived and worked in a mock-up spacecraft at IBMP. The final stage of the experiment, which was intended to simulate a 520-day crewed mission, was conducted by an all-male crew consisting of three Russians (Alexey Sitev, Sukhrob Kamolov, Alexander Smoleevskij), a Frenchman (Romain Charles), an Italian (Diego Urbina) and a Chinese citizen (Yue Wang). The mock-up facility simulated an Earth-Mars shuttle spacecraft, an ascent-descent craft, and the Martian surface. The volunteers who participated in the three stages included professionals with experience in engineering, medicine, biology, and human spaceflight. The experiment yielded important data on the physiological, social and psychological effects of long-term close-quarters isolation.
Discussed on
- "MARS-500" | 2015-08-29 | 49 Upvotes 14 Comments
Panspermia
Panspermia (from Ancient Greek πᾶν (pan), meaning 'all', and σπέρμα (sperma), meaning 'seed') is the hypothesis that life exists throughout the Universe, distributed by space dust, meteoroids, asteroids, comets, planetoids, and also by spacecraft carrying unintended contamination by microorganisms. Distribution may have occurred spanning galaxies, and so may not be restricted to the limited scale of solar systems.
Panspermia hypotheses propose (for example) that microscopic life-forms that can survive the effects of space (such as extremophiles) can become trapped in debris ejected into space after collisions between planets and small Solar System bodies that harbor life. Some organisms may travel dormant for an extended amount of time before colliding randomly with other planets or intermingling with protoplanetary disks. Under certain ideal impact circumstances (into a body of water, for example), and ideal conditions on a new planet's surfaces, it is possible that the surviving organisms could become active and begin to colonize their new environment. At least one report finds that endospores from a type of Bacillus bacteria found in Morocco can survive being heated to 420 °C (788 °F), making the argument for Panspermia even stronger. Panspermia studies concentrate not on how life began, but on methods that may distribute it in the Universe.
Pseudo-panspermia (sometimes called "soft panspermia" or "molecular panspermia") argues that the pre-biotic organic building-blocks of life originated in space, became incorporated in the solar nebula from which planets condensed, and were further—and continuously—distributed to planetary surfaces where life then emerged (abiogenesis). From the early 1970s, it started to become evident that interstellar dust included a large component of organic molecules. Interstellar molecules are formed by chemical reactions within very sparse interstellar or circumstellar clouds of dust and gas. The dust plays a critical role in shielding the molecules from the ionizing effect of ultraviolet radiation emitted by stars.
The chemistry leading to life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the Universe was only 10 to 17 million years old. Though the presence of life is confirmed only on the Earth, some scientists think that extraterrestrial life is not only plausible, but probable or inevitable. Probes and instruments have started examining other planets and moons in the Solar System and in other planetary systems for evidence of having once supported simple life, and projects such as SETI attempt to detect radio transmissions from possible extraterrestrial civilizations.
Discussed on
- "Panspermia" | 2018-10-13 | 73 Upvotes 44 Comments
Tell HN: Perseids: "Last Chance" for Best Meteor Viewing Tonight
The Perseids are a prolific meteor shower associated with the comet Swift–Tuttle. The meteors are called the Perseids because the point from which they appear to hail (called the radiant) lies in the constellation Perseus.
Discussed on
- "Tell HN: Perseids: "Last Chance" for Best Meteor Viewing Tonight" | 2009-08-12 | 20 Upvotes 13 Comments
The Pioneer Anomaly
The Pioneer anomaly or Pioneer effect was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about 20 astronomical units (3×109 km; 2×109 mi) on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by an anisotropic radiation pressure caused by the spacecraft's heat loss.
Both Pioneer spacecraft are escaping the Solar System but are slowing under the influence of the Sun's gravity. Upon very close examination of navigational data, the spacecraft were found to be slowing slightly more than expected. The effect is an extremely small acceleration towards the Sun, of (8.74±1.33)×10−10 m/s2, which is equivalent to a reduction of the outbound velocity by 1 km/h over a period of ten years. The two spacecraft were launched in 1972 and 1973. The anomalous acceleration was first noticed as early as 1980 but not seriously investigated until 1994. The last communication with either spacecraft was in 2003, but analysis of recorded data continues.
Various explanations, both of spacecraft behavior and of gravitation itself, were proposed to explain the anomaly. Over the period from 1998 to 2012, one particular explanation became accepted. The spacecraft, which are surrounded by an ultra-high vacuum and are each powered by a radioisotope thermoelectric generator (RTG), can shed heat only via thermal radiation. If, due to the design of the spacecraft, more heat is emitted in a particular direction by what is known as a radiative anisotropy, then the spacecraft would accelerate slightly in the direction opposite of the excess emitted radiation due to the recoil of thermal photons. If the excess radiation and attendant radiation pressure were pointed in a general direction opposite the Sun, the spacecraft's velocity away from the Sun would be decreasing at a rate greater than could be explained by previously recognized forces, such as gravity and trace friction due to the interplanetary medium (imperfect vacuum).
By 2012 several papers by different groups, all reanalyzing the thermal radiation pressure forces inherent in the spacecraft, showed that a careful accounting of this explains the entire anomaly; thus the cause is mundane and does not point to any new phenomenon or need for a different physical paradigm. The most detailed analysis to date, by some of the original investigators, explicitly looks at two methods of estimating thermal forces, concluding that there is "no statistically significant difference between the two estimates and [...] that once the thermal recoil force is properly accounted for, no anomalous acceleration remains."
Discussed on
- "The Pioneer Anomaly" | 2011-03-04 | 52 Upvotes 10 Comments
Solar storm of 1859
The solar storm of 1859 (also known as the Carrington Event) was a powerful geomagnetic storm during solar cycle 10 (1855–1867). A solar coronal mass ejection (CME) hit Earth's magnetosphere and induced the largest geomagnetic storm on record, September 1–2, 1859. The associated "white light flare" in the solar photosphere was observed and recorded by British astronomers Richard C. Carrington (1826–1875) and Richard Hodgson (1804–1872). The storm caused strong auroral displays and wrought havoc with telegraph systems. The now-standard unique IAU identifier for this flare is SOL1859-09-01.
A solar storm of this magnitude occurring today would cause widespread electrical disruptions, blackouts and damage due to extended outages of the electrical grid. The solar storm of 2012 was of similar magnitude, but it passed Earth's orbit without striking the planet, missing by nine days.
Discussed on
- "Solar Storm of 1859" | 2020-05-04 | 148 Upvotes 84 Comments
- "Solar storm of 1859" | 2018-11-04 | 109 Upvotes 45 Comments
Mars Colonial Transporter
The SpaceX Starship is a fully-reusable launch vehicle and spacecraft that is being privately developed by SpaceX. It is designed to be a long-duration cargo and passenger-carrying spacecraft. The development of the Starship began in 2014.
Discussed on
- "Mars Colonial Transporter" | 2014-04-19 | 27 Upvotes 6 Comments
Sweden Solar System
The Sweden Solar System is the world's largest permanent scale model of the Solar System. The Sun is represented by the Ericsson Globe in Stockholm, the largest hemispherical building in the world. The inner planets can also be found in Stockholm but the outer planets are situated northward in other cities along the Baltic Sea. The system was started by Nils Brenning and Gösta Gahm and is on the scale of 1:20 million.
Discussed on
- "Sweden Solar System" | 2014-08-12 | 224 Upvotes 40 Comments
- "The Sweden Solar System" | 2011-02-15 | 195 Upvotes 26 Comments
Terraforming of Mars
Terraforming of Mars is a procedure that would comprise of planetary engineering project or concurrent projects, with the goal of transforming the planet from one hostile to terrestrial life to one that can sustainably host humans and other lifeforms free of protection or mediation. The process would presumably involve the rehabilitation of the planet's extant climate, atmosphere, and surface through a variety of resource-intensive initiatives, and the installation of a novel ecological system or systems.
Justifications for choosing Mars over other potential terraforming targets include the presence of water and a geological history that suggests it once harbored a dense atmosphere similar to Earth’s. Hazards and difficulties include low gravity, low light levels relative to Earth’s, and the lack of a magnetic field.
Objections to the project include questions about its feasibility, general ethical concerns about terraforming, and the considerable cost that such an undertaking would involve. Reasons for terraforming the planet include allaying concerns about resource use and depletion on Earth and arguments that the altering and subsequent or concurrent settlement of other planets decreases the odds of humanity's extinction.
Disagreement exists about whether current technology could render the planet habitable.
Discussed on
- "Terraforming of Mars" | 2012-07-07 | 21 Upvotes 14 Comments
Mars will have a 420 day since it has a 668 days a year
Various schemes have been used or proposed for timekeeping on the planet Mars independently of Earth time and calendars.
Mars has an axial tilt and a rotation period similar to those of Earth. Thus, it experiences seasons of spring, summer, autumn and winter much like Earth. Coincidentally, the duration of a Martian day is within a few percent of that of an Earth day, which has led to the use of analogous time units. A Mars year is almost twice as long as Earth's, and its orbital eccentricity is considerably larger, which means that the lengths of various Martian seasons differ considerably, and sundial time can diverge from clock time more than on Earth.
Timeline of the far future
While the future can never be predicted with absolute certainty, present understanding in various scientific fields allows for the prediction of some far-future events, if only in the broadest outline. These fields include astrophysics, which has revealed how planets and stars form, interact, and die; particle physics, which has revealed how matter behaves at the smallest scales; evolutionary biology, which predicts how life will evolve over time; and plate tectonics, which shows how continents shift over millennia.
All projections of the future of Earth, the Solar System, and the universe must account for the second law of thermodynamics, which states that entropy, or a loss of the energy available to do work, must rise over time. Stars will eventually exhaust their supply of hydrogen fuel and burn out. Close encounters between astronomical objects gravitationally fling planets from their star systems, and star systems from galaxies.
Physicists expect that matter itself will eventually come under the influence of radioactive decay, as even the most stable materials break apart into subatomic particles. Current data suggest that the universe has a flat geometry (or very close to flat), and thus will not collapse in on itself after a finite time, and the infinite future allows for the occurrence of a number of massively improbable events, such as the formation of Boltzmann brains.
The timelines displayed here cover events from the beginning of the 11th millennium to the furthest reaches of future time. A number of alternative future events are listed to account for questions still unresolved, such as whether humans will become extinct, whether protons decay, and whether the Earth survives when the Sun expands to become a red giant.
Discussed on
- "Timeline of the Far Future" | 2020-05-17 | 168 Upvotes 112 Comments
- "Timeline of the far future" | 2018-07-18 | 696 Upvotes 258 Comments
- "Timeline of the far future" | 2012-05-06 | 294 Upvotes 88 Comments