Topic: Molecular Biology/Genetics

You are looking at all articles with the topic "Molecular Biology/Genetics". We found 3 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

πŸ”— Sonic Hedgehog Protein (encoded by the SHH gene)

πŸ”— Video games πŸ”— Molecular Biology πŸ”— Video games/Sega πŸ”— Molecular Biology/Molecular and Cell Biology πŸ”— Molecular Biology/Genetics πŸ”— Molecular Biology/Cell Signaling

Sonic hedgehog protein (SHH) is encoded for by the SHH gene. The protein is named after the character Sonic the Hedgehog.

This signaling molecule is key in regulating embryonic morphogenesis in all animals. SHH controls organogenesis and the organization of the central nervous system, limbs, digits and many other parts of the body. Sonic hedgehog is a morphogen that patterns the developing embryo using a concentration gradient characterized by the French flag model. This model has a non-uniform distribution of SHH molecules which governs different cell fates according to concentration. Mutations in this gene can cause holoprosencephaly, a failure of splitting in the cerebral hemispheres, as demonstrated in an experiment using SHH knock-out mice in which the forebrain midline failed to develop and instead only a single fused telencephalic vesicle resulted.

Sonic hedgehog still plays a role in differentiation, proliferation, and maintenance of adult tissues. Abnormal activation of SHH signaling in adult tissues has been implicated in various types of cancers including breast, skin, brain, liver, gallbladder and many more.

Discussed on

πŸ”— Wikipedia tests a new UI design

πŸ”— Religion πŸ”— Biology πŸ”— History of Science πŸ”— Science πŸ”— Evolutionary biology πŸ”— Molecular Biology πŸ”— Creationism πŸ”— Tree of Life πŸ”— Molecular Biology/Genetics

Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes that are passed on from parent to offspring during reproduction. Different characteristics tend to exist within any given population as a result of mutation, genetic recombination and other sources of genetic variation. Evolution occurs when evolutionary processes such as natural selection (including sexual selection) and genetic drift act on this variation, resulting in certain characteristics becoming more common or rare within a population. The evolutionary pressures that determine whether a characteristic would be common or rare within a population constantly change, resulting in a change in heritable characteristics arising over successive generations. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms and molecules.

The theory of evolution by natural selection was conceived independently by Charles Darwin and Alfred Russel Wallace in the mid-19th century and was set out in detail in Darwin's book On the Origin of Species. Evolution by natural selection was first demonstrated by the observation that more offspring are often produced than can possibly survive. This is followed by three observable facts about living organisms: (1) traits vary among individuals with respect to their morphology, physiology and behaviour (phenotypic variation), (2) different traits confer different rates of survival and reproduction (differential fitness) and (3) traits can be passed from generation to generation (heritability of fitness). Thus, in successive generations members of a population are more likely to be replaced by the progenies of parents with favourable characteristics that have enabled them to survive and reproduce in their respective environments. In the early 20th century, other competing ideas of evolution such as mutationism and orthogenesis were refuted as the modern synthesis reconciled Darwinian evolution with classical genetics, which established adaptive evolution as being caused by natural selection acting on Mendelian genetic variation.

All life on Earth shares a last universal common ancestor (LUCA) that lived approximately 3.5–3.8Β billion years ago. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilised multicellular organisms. Existing patterns of biodiversity have been shaped by repeated formations of new species (speciation), changes within species (anagenesis) and loss of species (extinction) throughout the evolutionary history of life on Earth. Morphological and biochemical traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct phylogenetic trees.

Evolutionary biologists have continued to study various aspects of evolution by forming and testing hypotheses as well as constructing theories based on evidence from the field or laboratory and on data generated by the methods of mathematical and theoretical biology. Their discoveries have influenced not just the development of biology but numerous other scientific and industrial fields, including agriculture, medicine, and computer science.

Discussed on

πŸ”— Eigen's Paradox

πŸ”— Evolutionary biology πŸ”— Molecular Biology πŸ”— Molecular Biology/Genetics

In evolutionary biology and population genetics, the error threshold (or critical mutation rate) is a limit on the number of base pairs a self-replicating molecule may have before mutation will destroy the information in subsequent generations of the molecule. The error threshold is crucial to understanding "Eigen's paradox".

The error threshold is a concept in the origins of life (abiogenesis), in particular of very early life, before the advent of DNA. It is postulated that the first self-replicating molecules might have been small ribozyme-like RNA molecules. These molecules consist of strings of base pairs or "digits", and their order is a code that directs how the molecule interacts with its environment. All replication is subject to mutation error. During the replication process, each digit has a certain probability of being replaced by some other digit, which changes the way the molecule interacts with its environment, and may increase or decrease its fitness, or ability to reproduce, in that environment.

Discussed on