Topic: Limnology and Oceanography
You are looking at all articles with the topic "Limnology and Oceanography". We found 2 matches.
Hint:
To view all topics, click here. Too see the most popular topics, click here instead.
Great Oxidation Event
The Great Oxidation Event (GOE), sometimes also called the Great Oxygenation Event, Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust, or Oxygen Revolution, was a time period when the Earth's atmosphere and the shallow ocean experienced a rise in oxygen, approximately 2.4 billion years ago (2.4 Ga) to 2.1–2.0 Ga during the Paleoproterozoic era. Geological, isotopic, and chemical evidence suggests that biologically induced molecular oxygen (dioxygen, O2) started to accumulate in Earth's atmosphere and changed Earth's atmosphere from a weakly reducing atmosphere to an oxidizing atmosphere, causing almost all life on Earth to go extinct. The cyanobacteria producing the oxygen caused the event which enabled the subsequent development of multicellular forms.
Discussed on
- "Great Oxidation Event" | 2019-07-21 | 64 Upvotes 24 Comments
You don't know ice. Neither do I, apparently
Ice is water frozen into a solid state. Depending on the presence of impurities such as particles of soil or bubbles of air, it can appear transparent or a more or less opaque bluish-white color.
In the Solar System, ice is abundant and occurs naturally from as close to the Sun as Mercury to as far away as the Oort cloud objects. Beyond the Solar System, it occurs as interstellar ice. It is abundant on Earth's surface – particularly in the polar regions and above the snow line – and, as a common form of precipitation and deposition, plays a key role in Earth's water cycle and climate. It falls as snowflakes and hail or occurs as frost, icicles or ice spikes.
Ice molecules can exhibit eighteen or more different phases (packing geometries) that depend on temperature and pressure. When water is cooled rapidly (quenching), up to three different types of amorphous ice can form depending on the history of its pressure and temperature. When cooled slowly correlated proton tunneling occurs below −253.15 °C (20 K, −423.67 °F) giving rise to macroscopic quantum phenomena. Virtually all the ice on Earth's surface and in its atmosphere is of a hexagonal crystalline structure denoted as ice Ih (spoken as "ice one h") with minute traces of cubic ice denoted as ice Ic. The most common phase transition to ice Ih occurs when liquid water is cooled below 0 °C (273.15 K, 32 °F) at standard atmospheric pressure. It may also be deposited directly by water vapor, as happens in the formation of frost. The transition from ice to water is melting and from ice directly to water vapor is sublimation.
Ice is used in a variety of ways, including cooling, winter sports and ice sculpture.
Discussed on
- "You don't know ice. Neither do I, apparently" | 2014-07-23 | 13 Upvotes 11 Comments