Topic: Astronomy (Page 4)

You are looking at all articles with the topic "Astronomy". We found 67 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

πŸ”— Decimal Time

πŸ”— Astronomy πŸ”— Time

Decimal time is the representation of the time of day using units which are decimally related. This term is often used specifically to refer to the French Republican calendar time system used in France from 1794 to 1800, during the French Revolution, which divided the day into 10 decimal hours, each decimal hour into 100 decimal minutes and each decimal minute into 100 decimal seconds (100000 decimal seconds per day), as opposed to the more familiar standard time, which divides the day into 24 hours, each hour into 60 minutes and each minute into 60 seconds (86400 SI seconds per day).

The main advantage of a decimal time system is that, since the base used to divide the time is the same as the one used to represent it, the representation of hours, minutes and seconds can be handled as a unified value. Therefore, it becomes simpler to interpret a timestamp and to perform conversions. For instance, 1h23m45s is 1 decimal hour, 23 decimal minutes, and 45 decimal seconds, or 1.2345 decimal hours, or 123.45 decimal minutes or 12345 decimal seconds; 3 hours is 300 minutes or 30,000 seconds. This property also makes it straightforward to represent a timestamp as a fractional day, so that 2024-01-15.54321 can be interpreted as five decimal hours and 43 decimal minutes and 21 decimal seconds after the start of that day, or a fraction of 0.54321 (54.321%) through that day (which is shortly after traditional 13:00). It also adjusts well to digital time representation using epochs, in that the internal time representation can be used directly both for computation and for user-facing display.

Discussed on

πŸ”— Airglow

πŸ”— Physics πŸ”— Astronomy

Airglow (also called nightglow) is a faint emission of light by a planetary atmosphere. In the case of Earth's atmosphere, this optical phenomenon causes the night sky never to be completely dark, even after the effects of starlight and diffused sunlight from the far side are removed.

Discussed on

πŸ”— The Great Debate

πŸ”— Astronomy

The Great Debate, also called the Shapley–Curtis Debate, was held on 26 April 1920 at the Smithsonian Museum of Natural History, between the astronomers Harlow Shapley and Heber Curtis. It concerned the nature of so-called spiral nebulae and the size of the universe; Shapley believed that distant nebulae were relatively small and lay within the outskirts of Earth's home galaxy, while Curtis held that they were in fact independent galaxies, implying that they were exceedingly large and distant.

The two scientists first presented independent technical papers about "The Scale of the Universe" during the day and then took part in a joint discussion that evening. Much of the lore of the Great Debate grew out of two papers published by Shapley and by Curtis in the May 1921 issue of the Bulletin of the National Research Council. The published papers each included counter arguments to the position advocated by the other scientist at the 1920 meeting.

In the aftermath of the public debate, scientists have been able to verify individual pieces of evidence from both astronomers, but on the main point of the existence of other galaxies, Curtis has been proven correct.

Discussed on

πŸ”— A supernova star that erupted continuously for about 1,000 days

πŸ”— Astronomy πŸ”— Astronomy/Astronomical objects

iPTF14hls is an unusual supernova star that erupted continuously for about 1,000 days beginning in September 2014 before becoming a remnant nebula. It had previously erupted in 1954. None of the theories nor proposed hypotheses fully explain all the aspects of the object.

Discussed on

πŸ”— Lunar Lava Tube

πŸ”— Volcanoes πŸ”— Astronomy πŸ”— Solar System πŸ”— Solar System/Moon

Lunar lava tubes are lava tubes on the Moon formed during the eruption of basaltic lava flows. When the surface of a lava flow cools, it hardens and the lava can channel beneath the surface in a tube-shaped passage. Once the flow of lava diminishes, the tube may drain, forming a hollow void. Lunar lava tubes are formed on sloped surfaces that range in angle from 0.4Β° to 6.5Β°. These tubes may be as wide as 500 metres (1,600Β ft) before they become unstable against gravitational collapse. However, stable tubes may still be disrupted by seismic events or meteoroid bombardment.

The existence of a lava tube is sometimes revealed by the presence of a "skylight", a place in which the roof of the tube has collapsed, leaving a circular hole that can be observed by lunar orbiters.

Discussed on

πŸ”— Saturn's Hexagon

πŸ”— Astronomy πŸ”— Weather πŸ”— Astronomy/Solar System πŸ”— Weather/Weather πŸ”— Weather/Space weather

Saturn's hexagon is a persistent approximately hexagonal cloud pattern around the north pole of the planet Saturn, located at about 78Β°N. The sides of the hexagon are about 14,500Β km (9,000Β mi) long, which is about 2,000Β km (1,200Β mi) longer than the diameter of Earth. The hexagon may be a bit more than 29,000Β km (18,000Β mi) wide, may be 300Β km (190Β mi) high, and may be a jet stream made of atmospheric gases moving at 320Β km/h (200Β mph). It rotates with a period of 10h 39m 24s, the same period as Saturn's radio emissions from its interior. The hexagon does not shift in longitude like other clouds in the visible atmosphere.

Saturn's hexagon was discovered during the Voyager mission in 1981, and was later revisited by Cassini-Huygens in 2006. During the Cassini mission, the hexagon changed from a mostly blue color to more of a golden color. Saturn's south pole does not have a hexagon, as verified by Hubble observations. It does, however, have a vortex, and there is also a vortex inside the northern hexagon. Multiple hypotheses for the hexagonal cloud pattern have been developed.

Discussed on

πŸ”— Earth may be constantly producing oil

πŸ”— Biography πŸ”— Physics πŸ”— Biography/science and academia πŸ”— Astronomy πŸ”— Physics/Biographies πŸ”— Biophysics

Thomas Gold (also known as Tommy Gold), (May 22, 1920 – June 22, 2004) was an Austrian-born astrophysicist, a professor of astronomy at Cornell University, a member of the U.S. National Academy of Sciences, and a Fellow of the Royal Society (London). Gold was one of three young Cambridge scientists who in 1948 proposed the now mostly abandoned "steady state" hypothesis of the universe. Gold's work crossed academic and scientific boundaries, into biophysics, astronomy, aerospace engineering, and geophysics.

Discussed on

πŸ”— Gauss's Pythagorean right triangle proposal

πŸ”— Mathematics πŸ”— Astronomy

Gauss's Pythagorean right triangle proposal is an idea attributed to Carl Friedrich Gauss for a method to signal extraterrestrial beings by constructing an immense right triangle and three squares on the surface of the Earth. The shapes would be a symbolic representation of the Pythagorean theorem, large enough to be seen from the Moon or Mars.

Although credited in numerous sources as originating with Gauss, with exact details of the proposal set out, the specificity of detail, and even whether Gauss made the proposal, have been called into question. Many of the earliest sources do not actually name Gauss as the originator, instead crediting a "German astronomer" or using other nonspecific descriptors, and in some cases naming a different author entirely. The details of the proposal also change significantly upon different retellings. Nevertheless, Gauss's writings reveal a belief and interest in finding a method to contact extraterrestrial life, and that he did, at the least, propose using amplified light using a heliotrope, his own 1818 invention, to signal supposed inhabitants of the Moon.

Discussed on

πŸ”— 319 Leona

πŸ”— Astronomy πŸ”— Astronomy/Astronomical objects πŸ”— Astronomy/Solar System

319 Leona (provisional designation A920 HE), is a dark asteroid and tumbling slow rotator from the outermost regions of the asteroid belt, approximately 70 kilometers in diameter. It was discovered on 8 October 1891, by French astronomer Auguste Charlois at Nice Observatory in southwestern France. Any reference of its name to a person is unknown. On 12 December 2023 Leona will occult Betelgeuse as seen from southern Europe.

Discussed on

πŸ”— The Pioneer Anomaly

πŸ”— Spaceflight πŸ”— Physics πŸ”— Astronomy πŸ”— Solar System

The Pioneer anomaly or Pioneer effect was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about 20 astronomical units (3Γ—109Β km; 2Γ—109Β mi) on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by an anisotropic radiation pressure caused by the spacecraft's heat loss.

Both Pioneer spacecraft are escaping the Solar System but are slowing under the influence of the Sun's gravity. Upon very close examination of navigational data, the spacecraft were found to be slowing slightly more than expected. The effect is an extremely small acceleration towards the Sun, of (8.74Β±1.33)Γ—10βˆ’10Β m/s2, which is equivalent to a reduction of the outbound velocity by 1Β km/h over a period of ten years. The two spacecraft were launched in 1972 and 1973. The anomalous acceleration was first noticed as early as 1980 but not seriously investigated until 1994. The last communication with either spacecraft was in 2003, but analysis of recorded data continues.

Various explanations, both of spacecraft behavior and of gravitation itself, were proposed to explain the anomaly. Over the period from 1998 to 2012, one particular explanation became accepted. The spacecraft, which are surrounded by an ultra-high vacuum and are each powered by a radioisotope thermoelectric generator (RTG), can shed heat only via thermal radiation. If, due to the design of the spacecraft, more heat is emitted in a particular direction by what is known as a radiative anisotropy, then the spacecraft would accelerate slightly in the direction opposite of the excess emitted radiation due to the recoil of thermal photons. If the excess radiation and attendant radiation pressure were pointed in a general direction opposite the Sun, the spacecraft's velocity away from the Sun would be decreasing at a rate greater than could be explained by previously recognized forces, such as gravity and trace friction due to the interplanetary medium (imperfect vacuum).

By 2012 several papers by different groups, all reanalyzing the thermal radiation pressure forces inherent in the spacecraft, showed that a careful accounting of this explains the entire anomaly; thus the cause is mundane and does not point to any new phenomenon or need for a different physical paradigm. The most detailed analysis to date, by some of the original investigators, explicitly looks at two methods of estimating thermal forces, concluding that there is "no statistically significant difference between the two estimates and [...] that once the thermal recoil force is properly accounted for, no anomalous acceleration remains."

Discussed on