Topic: Anatomy/Neuroanatomy

You are looking at all articles with the topic "Anatomy/Neuroanatomy". We found 2 matches.

Hint: To view all topics, click here. Too see the most popular topics, click here instead.

🔗 Yakovlevian Torque

🔗 Neuroscience 🔗 Anatomy 🔗 Anatomy/Neuroanatomy

Yakovlevian torque (also known as occipital bending (OB) or counterclockwise brain torque) is the tendency of the right side of the human brain to be warped slightly forward relative to the left and the left side of the human brain to be warped slightly backward relative to the right. This is responsible for certain asymmetries, such as how the lateral sulcus of the human brain is often longer and less curved on the left side of the brain relative to the right. Stated in another way, Yakovlevian Torque can be defined by the existence of right-frontal and left-occipital petalias, which are protrusions of the surface of one hemisphere relative to the other. It is named for Paul Ivan Yakovlev (1894–1983), a Russian-American neuroanatomist from Harvard Medical School.

Discussed on

🔗 Enteric nervous system

🔗 Animal anatomy 🔗 Neuroscience 🔗 Anatomy 🔗 Anatomy/Neuroanatomy

The enteric nervous system (ENS) or intrinsic nervous system is one of the main divisions of the autonomic nervous system (ANS) and consists of a mesh-like system of neurons that governs the function of the gastrointestinal tract. It is capable of acting independently of the sympathetic and parasympathetic nervous systems, although it may be influenced by them. The ENS is also called the second brain.It is derived from neural crest cells.

The enteric nervous system is capable of operating independently of the brain and spinal cord, but does rely on innervation from the autonomic nervous system via the vagus nerve and prevertebral ganglia in healthy subjects. However, studies have shown that the system is operable with a severed vagus nerve. The neurons of the enteric nervous system control the motor functions of the system, in addition to the secretion of gastrointestinal enzymes. These neurons communicate through many neurotransmitters similar to the CNS, including acetylcholine, dopamine, and serotonin. The large presence of serotonin and dopamine in the gut are key areas of research for neurogastroenterologists.

Discussed on