🔗 Negative Temperature

🔗 Physics

Certain systems can achieve negative thermodynamic temperature; that is, their temperature can be expressed as a negative quantity on the Kelvin or Rankine scales. This should be distinguished from temperatures expressed as negative numbers on non-thermodynamic Celsius or Fahrenheit scales, which are nevertheless higher than absolute zero.

The absolute temperature (Kelvin) scale can be understood loosely as a measure of average kinetic energy. Usually, system temperatures are positive. However, in particular isolated systems, the temperature defined in terms of Boltzmann's entropy can become negative.

The possibility of negative temperatures was first predicted by Lars Onsager in 1949, in his analysis of classical point vortices confined to a finite area. Confined point vortices are a system with bounded phase space as their canonical momenta are not independent degrees of freedom from their canonical position coordinates. Bounded phase space is the essential property that allows for negative temperatures, and such temperatures can occur in both classical and quantum systems. As shown by Onsager, a system with bounded phase space necessarily has a peak in the entropy as energy is increased. For energies exceeding the value where the peak occurs, the entropy decreases as energy increases, and high-energy states necessarily have negative Boltzmann temperature.

A system with a truly negative temperature on the Kelvin scale is hotter than any system with a positive temperature. If a negative-temperature system and a positive-temperature system come in contact, heat will flow from the negative- to the positive-temperature system. A standard example of such a system is population inversion in laser physics.

Temperature is loosely interpreted as the average kinetic energy of the system's particles. The existence of negative temperature, let alone negative temperature representing "hotter" systems than positive temperature, would seem paradoxical in this interpretation. The paradox is resolved by considering the more rigorous definition of thermodynamic temperature as the tradeoff between internal energy and entropy contained in the system, with "coldness", the reciprocal of temperature, being the more fundamental quantity. Systems with a positive temperature will increase in entropy as one adds energy to the system, while systems with a negative temperature will decrease in entropy as one adds energy to the system.

Thermodynamic systems with unbounded phase space cannot achieve negative temperatures: adding heat always increases their entropy. The possibility of a decrease in entropy as energy increases requires the system to "saturate" in entropy. This is only possible if the number of high energy states is limited. For a system of ordinary (quantum or classical) particles such as atoms or dust, the number of high energy states is unlimited (particle momenta can in principle be increased indefinitely). Some systems, however (see the examples below), have a maximum amount of energy that they can hold, and as they approach that maximum energy their entropy actually begins to decrease. The limited range of states accessible to a system with negative temperature means that negative temperature is associated with emergent ordering of the system at high energies. For example in Onsager's point-vortex analysis negative temperature is associated with the emergence of large-scale clusters of vortices. This spontaneous ordering in equilibrium statistical mechanics goes against common physical intuition that increased energy leads to increased disorder.

Discussed on